# NOT RUN {
# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(
Correlation = 0.85,
N = 1000,
ID = 2,
ZIP = 0,
AddDate = FALSE,
Classification = FALSE,
MultiClass = FALSE)
# Run function
TestModel <- RemixAutoML::AutoH2oDRFRegression(
# Compute management
MaxMem = {gc();paste0(as.character(floor(as.numeric(system("awk '/MemFree/ {print $2}' /proc/meminfo", intern=TRUE)) / 1000000)),"G")},
NThreads = max(1L, parallel::detectCores() - 2L),
H2OShutdown = TRUE,
H2OStartUp = TRUE,
IfSaveModel = "mojo",
# Model evaluation:
eval_metric = "RMSE",
NumOfParDepPlots = 3,
# Metadata arguments:
model_path = normalizePath("./"),
metadata_path = NULL,
ModelID = "FirstModel",
ReturnModelObjects = TRUE,
SaveModelObjects = FALSE,
SaveInfoToPDF = FALSE,
# Data Args
data = data,
TrainOnFull = FALSE,
ValidationData = NULL,
TestData = NULL,
TargetColumnName = "Adrian",
FeatureColNames = names(data)[!names(data) %in%
c("IDcol_1", "IDcol_2","Adrian")],
WeightsColumn = NULL,
TransformNumericColumns = NULL,
Methods = c("BoxCox", "Asinh", "Asin", "Log",
"LogPlus1", "Sqrt", "Logit", "YeoJohnson"),
# Grid Tuning Args
GridStrategy = "Cartesian",
GridTune = FALSE,
MaxModelsInGrid = 10,
MaxRuntimeSecs = 60*60*24,
StoppingRounds = 10,
# ML Args
Trees = 50,
MaxDepth = 20,
SampleRate = 0.632,
MTries = -1,
ColSampleRatePerTree = 1,
ColSampleRatePerTreeLevel = 1,
MinRows = 1,
NBins = 20,
NBinsCats = 1024,
NBinsTopLevel = 1024,
HistogramType = "AUTO",
CategoricalEncoding = "AUTO")
# }
Run the code above in your browser using DataLab