prepareSGP
, SGP data analysis, analyzeSGP
,
data combining, combineSGP
, and data summarization, summarizeSGP
. Calculating and using
student growth percentiles is as easy as ABC.abcSGP(sgp_object,
state,
steps=c("prepareSGP", "analyzeSGP", "combineSGP", "summarizeSGP", "visualizeSGP"),
years,
content_areas,
grades,
sgp.percentiles=TRUE,
sgp.projections=TRUE,
sgp.projections.lagged=TRUE,
sgp.percentiles.baseline=TRUE,
sgp.projections.baseline=TRUE,
sgp.projections.lagged.baseline=TRUE,
simulate.sgps=TRUE,
parallel.config,
save.intermediate.results=FALSE,
sgp.summaries=list(MEDIAN_SGP="median_na(SGP)",
MEDIAN_SGP_TARGET="median_na(SGP_TARGET)",
PERCENT_CATCHING_UP_KEEPING_UP=
"percent_in_category(CATCH_UP_KEEP_UP_STATUS, list(c('Catch Up: Yes', 'Keep Up: Yes')), list(c('Catch Up: Yes', 'Catch Up: No', 'Keep Up: Yes', 'Keep Up: No')))",
MEDIAN_SGP_COUNT="num_non_missing(SGP)",
PERCENT_AT_ABOVE_PROFICIENT="percent_in_category(ACHIEVEMENT_LEVEL, list(c('Proficient', 'Advanced')), list(c('Unsatisfactory', 'Partially Proficient', 'Proficient', 'Advanced')))",
PERCENT_AT_ABOVE_PROFICIENT_COUNT="num_non_missing(ACHIEVEMENT_LEVEL)"),
summary.groups=list(institution=c("STATE", "DISTRICT_NUMBER", "SCHOOL_NUMBER"),
content="CONTENT_AREA",
time="YEAR",
institution_level="GRADE",
demographic=c("GENDER", "ETHNICITY", "FREE_REDUCED_LUNCH_STATUS", "ELL_STATUS", "IEP_STATUS", "GIFTED_AND_TALENTED_PROGRAM_STATUS", "CATCH_UP_KEEP_UP_STATUS_INITIAL"),
institution_inclusion=list(STATE="STATE_ENROLLMENT_STATUS", DISTRICT_NUMBER="DISTRICT_ENROLLMENT_STATUS", SCHOOL_NUMBER="SCHOOL_ENROLLMENT_STATUS")),
confidence.interval.groups=list(TYPE="Bootstrap",
VARIABLES=c("SGP"),
QUANTILES=c(0.025, 0.975),
GROUPS=list(institution="SCHOOL_NUMBER",
content="CONTENT_AREA",
time="YEAR",
institution_level= NULL,
demographic=NULL,
institution_inclusion=list(STATE=NULL, DISTRICT_NUMBER=NULL, SCHOOL_NUMBER="SCHOOL_ENROLLMENT_STATUS"))),
plot.types=c("bubblePlot", "studentGrowthPlot", "growthAchievementPlot"))
sgpData_LONG
for an exemplar.prepareSGP
, analyzeSGP
, combineSGP
,
FOREACH
, SNOW
, MULTICORE
. List may also contain WORKERS for the number of cores or nodes used in abcSGP
be saved after each of prepareSGP
, analyzeSGP
,
combineSGP
summary.group
argument.institution
, content
, time
, institution_level
,
demographic
, and institution_inclusion
. Summaries gensummary.groups
argument indicating which groups to provide confidence intervals for. See documentation for summarizeSGP
and
visualizeSGP
indicating the types of plots to produce. Currently supported plots include bubblePlot
s,
Student
slot as a data.table keyed using VALID_CASE
, CONTENT_AREA
,
YEAR
, ID
, SGP results including student growth percentile and student growth projections/trajectories in the SGP slot, and summary results in the
Summary slot.sgpData_LONG
, prepareSGP
, analyzeSGP
, combineSGP
, summarizeSGP
,
studentGrowthPercentiles
, and studentGrowthProjections
## Runs all 5 steps
Demonstration_Data <- abcSGP(sgp_object=sgpData_LONG, state="DEMO")
## Or letting the function detect the state
Demonstration_Data <- sgpData_LONG
Demonstration_Data <- abcSGP(Demonstration_Data)
Run the code above in your browser using DataLab