# \donttest{
### These examples require an activated Python environment as described in
### Bartz-Beielstein, T., Rehbach, F., Sen, A., and Zaefferer, M.:
### Surrogate Model Based Hyperparameter Tuning for Deep Learning with SPOT,
### June 2021. http://arxiv.org/abs/2105.14625.
PYTHON_RETICULATE <- FALSE
if(PYTHON_RETICULATE){
library("SPOTMisc")
library("SPOT")
kerasConf <- getKerasConf()
## The following two settings are default:
kerasConf$encoding = "oneHot"
kerasConf$model = "dl"
cfg <- getModelConf(kerasConf$model)
x <- matrix(cfg$default, nrow=1)
transformFun <- cfg$transformations
types <- cfg$type
lower <- cfg$lower
upper <- cfg$upper
### First example: simple function call:
x <- matrix(lower, 1,)
funKerasMnist(x, kerasConf = kerasConf)
### Use convnet:
kerasConf$encoding <- "tensor"
kerasConf$model <- "cnn"
funKerasMnist(x, kerasConf = kerasConf)
### Second example: evaluation of several (three) hyperparameter settings:
xxx <- rbind(x,x,x)
funKerasMnist(xxx, kerasConf = kerasConf)
### Third example: spot call (dense network):
kerasConf$verbose <- 1
data <- getMnistData()
res <- spot(x = NULL,
fun = funKerasMnist,
lower = lower,
upper = upper,
control = list(funEvals=15,
noise = TRUE,
types = types,
plots = TRUE,
progress = TRUE,
seedFun = 1,
seedSPOT = 1),
kerasConf = kerasConf,
data = data)
### Fourth example: spot call (convnet):
kerasConf$verbose <- 1
kerasConf$encoding <- "tensor"
kerasConf$model <- "cnn"
data <- getMnistData(kerasConf)
res <- spot(x = NULL,
fun = funKerasMnist,
lower = lower,
upper = upper,
control = list(funEvals=15,
noise = TRUE,
types = types,
plots = TRUE,
progress = TRUE,
seedFun = 1,
seedSPOT = 1),
kerasConf = kerasConf,
data = data)
}
# }
Run the code above in your browser using DataLab