Learn R Programming

SPOTMisc (version 1.19.52)

Misc Extensions for the 'SPOT' Package

Description

Implements additional models, simulation tools, and interfaces as extensions to 'SPOT'. It provides tools for hyperparameter tuning via 'keras/tensorflow', interfacing 'mlr', for performing Markov chain simulations, and for sensitivity analysis based on sequential bifurcation methods as described in Bettonvil and Kleijnen (1996). Furthermore, additional plotting functions for output from 'SPOT' runs are implemented. Bartz-Beielstein T, Lasarczyk C W G, Preuss M (2005) . Bartz-Beielstein T, Zaefferer M, Rehbach F (2021) . Bartz-Beielstein T, Rehbach F, Sen A, Zaefferer M . Bettonvil, B, Kleijnen JPC (1996) .

Copy Link

Version

Install

install.packages('SPOTMisc')

Monthly Downloads

95

Version

1.19.52

License

GPL (>= 2)

Maintainer

Thomas Bartz-Beielstein

Last Published

September 5th, 2022

Functions in SPOTMisc (1.19.52)

funKerasGeneric

funKerasGeneric
getGenericTrainValTestData

getGenericTrainValTestData
getIndices

Get indices (positions) of variable names
getMlrTask

Generate an mlr task from Census KDD data set (+variation)
optimizer_sgd

Stochastic gradient descent (SGD) optimizer
getKerasConf

Get keras configuration parameter list
ggparcoordPrepare

Build data frame for ggparcoord (parallel plot)
kerasFit

kerasFit fit
optimizer_rmsprop

RMSProp optimizer
getVarNames

Get variable names or subsets of variable names
optimizer_adadelta

Adadelta optimizer.
getPredf

Get predictions from mlr
getMnistData

getMnistData
getMlrResample

Generate a fixed holdout instance for resampling
mapX2FLAGS

Map x parameters to a list of named values
getSimpleKerasModel

getSimpleKerasModel
kerasEvalPrediction

Evaluate keras prediction
makeLearnerFromHyperparameters

Make mlr learner from conf and hyperparameter vector
kerasReturnDummy

Return dummy values
getMlConfig

get ml config for keras on census
optimizer_adamax

Adamax optimizer
ggplotProgress

simple progress plot
plot_parallel

Parallel coordinate plot of a data set
plot_function_surface

Surface plot
genericDataPrep

Create an input pipeline using tfdatasets
optimizer_nadam

Nesterov Adam optimizer
plot_sensitivity

Sensitivity plot of a model
selectKerasActivation

Select keras activation function
scorePredictions

Score results from pred
plot_surface

Surface plot of a model
printf

formatted output
resDl100

Results from the spot() run dl100
getModelConf

Get model configuration
getObjf

Get objective function for mlr
startMnistRun

Start hyperparameter optimization runs with spot based on MNIST data
kerasCompileResult

Generate result from keras run
kerasBuildCompile

evalKerasGeneric model building and compile
getDataCensus

Get Census KDD data set (+variation)
startXGBCensusRun

Start hyperparameter optimization runs with spot based on US census data
trans_odd_round

odd transformation
subgroups

Return effects for each subgroup
valid_inputs

Check the validity of input parameters.
trans_10pow

10 power x transformation
translate_levels

Helper function: translate levels
optimizer_adagrad

Adagrad optimizer
predMlCensus

Predict machine learning models on Census data
optimizer_adam

Adam optimizer
trans_2pow

2 power x transformation
trans_2pow_round

2 power x transformation with round
prepareComparisonPlot

prepare data frame for comparisons (boxplots, violin plots)
selectKerasOptimizer

Select keras optimizer
selectTarget

Select target variable in a data frame
prepareProgressPlot

prepare data frame for progress plot
prepare_data_plot

Prepare data for plots
int2fact

Helper function: transform integer to factor
plotSensitivity

Sensitivity ggplot of a model
plotParallel

Parallel coordinate plot of a data set
printFLAGS

Print parameter values from FLAG list
trans_1minus10pow

10 power x transformation
prepare_spot_result_plot

Prepare data (results from a tuning run) for plots
trans_10pow_round

10 power x transformation with round
trans_mult2_round

Mult 2 transformation
trans_id

Identity transformation
plotnice.spotTreeModel

Plot a nice rpart tree model
predDlCensus

Predict deep learning models on Census data
sequentialBifurcation

Sequential Bifurcation
spotKeras

spotKEras
startCensusRun

Start hyperparameter optimization runs with spot based on US census data
spotPlot

spot plot (generic function)
MSE

mean squared errors
SSE

sum of squared errors
evalKerasGeneric

evalKerasGeneric model building and compile
evalParamCensus

evaluate hyperparameter config on census data
RMSE

root mean squared errors
evalKerasMnist

evalKerasMnist
active2All

Active to all
dataCensusFull

Full census data set
evalKerasMnist_0

evalKerasMnist_0
evalKerasTransferLearning

evalKerasTransferLearning
funBBOBCall

funBBOBCall
funKerasMnist_0

funKerasMnist_0
genCatsDogsData

generate Cats Dogs Data
funKerasMnist

funKerasMnist
funKerasTransferLearning

funKerasTransferLearning
getExplan

Get experimental design