# \donttest{
### These examples require an activated Python environment as described in
### Bartz-Beielstein, T., Rehbach, F., Sen, A., and Zaefferer, M.:
### Surrogate Model Based Hyperparameter Tuning for Deep Learning with SPOT,
### June 2021. http://arxiv.org/abs/2105.14625.
PYTHON_RETICULATE <- FALSE
if(PYTHON_RETICULATE){
task.type <- "classif"
nobs <- 1e4
nfactors <- "high"
nnumericals <- "high"
cardinality <- "high"
data.seed <- 1
cachedir <- "oml.cache"
target = "age"
prop <- 2 / 3
dfCensus <- getDataCensus(task.type = task.type,
nobs = nobs, nfactors = nfactors,
nnumericals = nnumericals, cardinality = cardinality,
data.seed = data.seed, cachedir = cachedir,
target = target)
census <- getGenericTrainValTestData(dfGeneric=dfCensus,
prop = prop)
## train data size is 2/3*2/3*10000:
dim(census$trainGeneric)
}
# }
Run the code above in your browser using DataLab