# \donttest{
### These examples require an activated Python environment as described in
### Bartz-Beielstein, T., Rehbach, F., Sen, A., and Zaefferer, M.:
### Surrogate Model Based Hyperparameter Tuning for Deep Learning with SPOT,
### June 2021. http://arxiv.org/abs/2105.14625.
PYTHON_RETICULATE <- FALSE
if(PYTHON_RETICULATE){
library(tfdatasets)
library(keras)
target <- "age"
batch_size <- 32
prop <- 2/3
dfCensus <- getDataCensus(nobs=1000,
target = target)
data <- getGenericTrainValTestData(dfGeneric = dfCensus,
prop = prop)
specList <- genericDataPrep(data=data, batch_size = batch_size)
## spec test data has 334 elements:
str(specList$testGeneric$target)
## simulate test:
pred <- runif(length(specList$testGeneric$target))
kerasConf <- getKerasConf()
simpleModel <- getSimpleKerasModel(specList=specList,
kerasConf=kerasConf)
FLAGS <- list(epochs=16)
y <- kerasFit(model=simpleModel,
specList = specList,
FLAGS = FLAGS,
kerasConf = kerasConf)
simpeModel <- y$model
history <- y$history
# evaluate on test data
pred <- predict(simpleModel, specList$testGeneric)
## in use keras evaluation (test error):
testScore <-
keras::evaluate(simpleModel,
tfdatasets::dataset_use_spec(dataset=specList$test_ds_generic,
spec=specList$specGeneric_prep),
verbose = kerasConf$verbose)
kerasEvalPrediction(pred=pred,
testScore = testScore,
specList = specList,
metrics = history$metrics,
kerasConf = kerasConf
)
}
# }
Run the code above in your browser using DataLab