# NOT RUN {
# }
# NOT RUN {
# loading a data set
data(survData)
survData$yL <- survData$yU <- survData[,1]
survData$yU[which(survData[,2] == 0)] <- Inf
survData$LT <- rep(0, dim(survData)[1])
form <- Formula(LT | yL + yU ~ cov1 + cov2)
#####################
## Hyperparameters ##
#####################
## log-Normal model
##
LN.ab <- c(0.3, 0.3)
## DPM model
##
DPM.mu <- log(12)
DPM.sigSq <- 100
DPM.ab <- c(2, 1)
Tau.ab <- c(1.5, 0.0125)
##
hyperParams <- list(LN=list(LN.ab=LN.ab),
DPM=list(DPM.mu=DPM.mu, DPM.sigSq=DPM.sigSq, DPM.ab=DPM.ab, Tau.ab=Tau.ab))
###################
## MCMC SETTINGS ##
###################
## Setting for the overall run
##
numReps <- 100
thin <- 1
burninPerc <- 0.5
## Tuning parameters for specific updates
##
## - those common to all models
beta.prop.var <- 0.01
mu.prop.var <- 0.1
zeta.prop.var <- 0.1
##
mcmcParams <- list(run=list(numReps=numReps, thin=thin, burninPerc=burninPerc),
tuning=list(beta.prop.var=beta.prop.var, mu.prop.var=mu.prop.var,
zeta.prop.var=zeta.prop.var))
################################################################
## Analysis of Independent univariate survival data ############
################################################################
###############
## logNormal ##
###############
##
myModel <- "LN"
myPath <- "Output/01-Results-LN/"
startValues <- initiate.startValues_AFT(form, survData, model=myModel, nChain=2)
##
fit_LN <- BayesSurv_AFT(form, survData, model=myModel, hyperParams,
startValues, mcmcParams, path=myPath)
fit_LN
summ.fit_LN <- summary(fit_LN); names(summ.fit_LN)
summ.fit_LN
pred_LN <- predict(fit_LN, time = seq(0, 35, 1), tseq=seq(from=0, to=30, by=5))
plot(pred_LN, plot.est="Haz")
plot(pred_LN, plot.est="Surv")
#########
## DPM ##
#########
##
myModel <- "DPM"
myPath <- "Output/02-Results-DPM/"
startValues <- initiate.startValues_AFT(form, survData, model=myModel, nChain=2)
##
fit_DPM <- BayesSurv_AFT(form, survData, model=myModel, hyperParams,
startValues, mcmcParams, path=myPath)
fit_DPM
summ.fit_DPM <- summary(fit_DPM); names(summ.fit_DPM)
summ.fit_DPM
pred_DPM <- predict(fit_DPM, time = seq(0, 35, 1), tseq=seq(from=0, to=30, by=5))
plot(pred_DPM, plot.est="Haz")
plot(pred_DPM, plot.est="Surv")
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab