Learn R Programming

SemiCompRisks (version 3.4)

simSurv: The function that simulates independent/cluster-correlated right-censored survival data under Weibull/Weibull-Normal model.

Description

The function to simulate independent/cluster-correlated right-censored survival data under Weibull/Weibull-Normal model.

Usage

simSurv(id=NULL, x, beta.true, alpha.true, kappa.true, sigmaV.true=NULL, cens)

Arguments

id

a vector of cluster information for n subjects. The cluster membership must be set to consecutive positive integers, \(1:J\). Required only when generating clustered data.

x

covariate matrix, n observations by p variables.

beta.true

true value for \(\beta\).

alpha.true

true value for \(\alpha\).

kappa.true

true value for \(\kappa\).

sigmaV.true

true value for \(\sigma_V\). Required only when generating clustered data.

cens

a vector with two numeric elements. The right censoring times are generated from Uniform(\(cens[1]\), \(cens[2]\)).

Value

simSurv returns a data.frame containing univariate time-to-event outcomes from n subjects. It is of dimension \(n\times 2\): the columns correspond to \(y\), \(\delta\).

y

a vector of n times to the event

delta

a vector of n censoring indicators for the event time (1=event occurred, 0=censored)

Examples

Run this code
# NOT RUN {
	set.seed(123456)
	
	J = 110
	nj = 50
	n = J * nj

	id <- rep(1:J, each = nj)

	x	= matrix(0, n, 2)	
	x[,1]	= rnorm(n, 0, 2)	
	x[,2]	= sample(c(0, 1), n, replace = TRUE)

	beta.true = c(0.5, 0.5)
	
	alpha.true = 1.5		
	kappa.true = 0.02
	sigmaV.true = 0.1

	cens <- c(30, 40)		

	simData <- simSurv(id, x, beta.true, alpha.true, kappa.true, 
				sigmaV.true, cens) 		 
# }

Run the code above in your browser using DataLab