qbj: Quantile of Berk-Jones statistic under the null hypothesis.
Description
Quantile of Berk-Jones statistic under the null hypothesis.
Usage
qbj(p, M, k0, k1, onesided = FALSE, method = "ecc", ei = NULL, err_thr = 1e-04)
Value
Quantile of BJ statistics.
Arguments
p
- a scalar left probability that defines the quantile.
M
- correlation matrix of input statistics (of the input p-values).
k0
- search range starts from the k0th smallest p-value.
k1
- search range ends at the k1th smallest p-value.
onesided
- TRUE if the input p-values are one-sided.
method
- default = "ecc": the effective correlation coefficient method in reference 2. "ave": the average method in reference 3, which is an earlier version of reference 2. The "ecc" method is more accurate and numerically stable than "ave" method.
ei
- the eigenvalues of M if available.
err_thr
- the error threshold. The default value is 1e-4.
References
1. Hong Zhang, Jiashun Jin and Zheyang Wu. "Distributions and power of optimal signal-detection statistics in finite case", IEEE Transactions on Signal Processing (2020) 68, 1021-1033
2. Hong Zhang and Zheyang Wu. "The general goodness-of-fit tests for correlated data", Computational Statistics & Data Analysis (2022) 167, 107379
3. Hong Zhang and Zheyang Wu. "Generalized Goodness-Of-Fit Tests for Correlated Data", arXiv:1806.03668.
## The 0.05 critical value of BJ statistic when n = 10:qbj(p=.95, M=diag(10), k0=1, k1=5, onesided=FALSE)
qbj(p=1-1e-5, M=diag(10), k0=1, k1=5, onesided=FALSE, err_thr=1e-8)