Learn R Programming

⚠️There's a newer version (5.2.1) of this package.Take me there.

Seurat v2.2

Seurat is an R toolkit for single cell genomics, developed and maintained by the Satija Lab at NYGC.

Instructions, documentation, and tutorials can be found at:

Seurat is also hosted on GitHub, you can view and clone the repository at

Seurat has been successfully installed on Mac OS X, Linux, and Windows, using the devtools package to install directly from GitHub

Improvements and new features will be added on a regular basis, please contact seuratpackage@gmail.com with any questions or if you would like to contribute

Version History

January 10, 2018

  • Version 2.2
  • Changes:
    • Support for multiple-dataset alignment with RunMultiCCA and AlignSubspace
    • New methods for evaluating alignment performance

October 12, 2017

  • Version 2.1
  • Changes:
    • Support for using MAST and DESeq2 packages for differential expression testing in FindMarkers
    • Support for multi-modal single-cell data via @assay slot

July 26, 2017

  • Version 2.0
  • Changes:
    • Preprint released for integrated analysis of scRNA-seq across conditions, technologies and species
    • Significant restructuring of code to support clarity and dataset exploration
    • Methods for scoring gene expression and cell-cycle phase

October 4, 2016

  • Version 1.4 released
  • Changes:
    • Improved tools for cluster evaluation/visualizations
    • Methods for combining and adding to datasets

August 22, 2016:

  • Version 1.3 released
  • Changes :
    • Improved clustering approach - see FAQ for details
    • All functions support sparse matrices
    • Methods for removing unwanted sources of variation
    • Consistent function names
    • Updated visualizations

May 21, 2015:

  • Drop-Seq manuscript published. Version 1.2 released
  • Changes :
    • Added support for spectral t-SNE and density clustering
    • New visualizations - including pcHeatmap, dot.plot, and feature.plot
    • Expanded package documentation, reduced import package burden
    • Seurat code is now hosted on GitHub, enables easy install through devtools
    • Small bug fixes

April 13, 2015:

  • Spatial mapping manuscript published. Version 1.1 released (initial release)

Copy Link

Version

Install

install.packages('Seurat')

Monthly Downloads

60,896

Version

2.2.1

License

GPL-3 | file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Satija Lab

Last Published

January 24th, 2025

Functions in Seurat (2.2.1)

AddSmoothedScore

Calculate smoothed expression values
BuildRFClassifier

Build Random Forest Classifier
AssessNodes

Assess Internal Nodes
AssessSplit

Assess Cluster Split
AlignSubspace

Align subspaces using dynamic time warping (DTW)
FastWhichCells

FastWhichCells Identify cells matching certain criteria (limited to character values)
BuildClusterTree

Phylogenetic Analysis of Identity Classes
CellCycleScoring

Score cell cycle phases
DMPlot

Plot Diffusion map
CellPlot

Cell-cell scatter plot
FindConservedMarkers

Finds markers that are conserved between the two groups
DMEmbed

Diffusion Maps Cell Embeddings Accessor Function
CustomDistance

Run a custom distance function on an input data matrix
CustomPalette

Create a custom color palette
DoHeatmap

Gene expression heatmap
DotPlot

Dot plot visualization
DoKMeans

K-Means Clustering
DimPlot

Dimensional reduction plot
DimHeatmap

Dimensional reduction heatmap
GetAssayData

Accessor function for multimodal data
FilterCells

Return a subset of the Seurat object
AddMetaData

Add Metadata
FeatureHeatmap

Vizualization of multiple features
DotPlotOld

Old Dot plot visualization (pre-ggplot implementation) Intuitive way of visualizing how gene expression changes across different identity classes (clusters). The size of the dot encodes the percentage of cells within a class, while the color encodes the AverageExpression level of 'expressing' cells (green is high).
FindClusters

Cluster Determination
PrintCalcParams

Print the calculation
KClustDimension

Perform spectral k-means clustering on single cells
ICAEmbed

ICA Cell Embeddings Accessor Function
LogVMR

Calculate the variance to mean ratio of logged values
RunDiffusion

Run diffusion map
HoverLocator

Hover Locator
AddImputedScore

Calculate imputed expression values
DBClustDimension

Perform spectral density clustering on single cells
AddModuleScore

Calculate module scores for gene expression programs in single cells
FetchData

Access cellular data
KMeansHeatmap

Plot k-means clusters
SetAssayData

Assay Data Mutator Function
LogNormalize

Normalize raw data
PCALoad

PCA Gene Loadings Accessor Function
SetDimReduction

Dimensional Reduction Mutator Function
AddSamples

Add samples into existing Seurat object.
PrintCCAParams

Print CCA Calculation Parameters
PCAPlot

Plot PCA map
CalcAlignmentMetric

Calculate an alignment score
DiffTTest

Differential expression testing using Student's t-test
BuildSNN

SNN Graph Construction
GetCellEmbeddings

Dimensional Reduction Cell Embeddings Accessor Function
StashIdent

Set identity class information
MetageneBicorPlot

Plot CC bicor saturation plot
DESeq2DETest

Differential expression using DESeq2
RunICA

Run Independent Component Analysis on gene expression
ICTopGenes

Find genes with highest ICA scores
PrintSNNParams

Print SNN Construction Calculation Parameters
ICTopCells

Find cells with highest ICA scores
DimElbowPlot

Quickly Pick Relevant Dimensions
AverageDetectionRate

Probability of detection by identity class
FeatureLocator

Feature Locator
InitialMapping

Infer spatial origins for single cells
FeaturePlot

Visualize 'features' on a dimensional reduction plot
GetCentroids

Get cell centroids
FindAllMarkersNode

Find all markers for a node
ICHeatmap

Independent component heatmap
VlnPlot

Single cell violin plot
AveragePCA

Average PCA scores by identity class
ExpVar

Calculate the variance of logged values
DarkTheme

Dark Theme
BlackAndWhite

A black and white color palette
FindAllMarkers

Gene expression markers for all identity classes
NegBinomDETest

Negative binomial test for UMI-count based data
CollapseSpeciesExpressionMatrix

Slim down a multi-species expression matrix, when only one species is primarily of interenst.
RenameIdent

Rename one identity class to another
CalcVarExpRatio

Calculate the ratio of variance explained by ICA or PCA to CCA
ClassifyCells

Classify New Data
NegBinomRegDETest

Negative binomial test for UMI-count based data (regularized version)
MinMax

Apply a ceiling and floor to all values in a matrix
PCTopGenes

Find genes with highest PCA scores
PlotClusterTree

Plot phylogenetic tree
PrintTSNEParams

Print TSNE Calculation Parameters
TobitTest

Differential expression testing using Tobit models
GetClusters

Get Cluster Assignments
MASTDETest

Differential expression using MAST
DiffExpTest

Likelihood ratio test for zero-inflated data
CaseMatch

Match the case of character vectors
SetClusters

Set Cluster Assignments
SetIdent

Set identity class information
UpdateSeuratObject

Update old Seurat object to accomodate new features
SaveClusters

Save cluster assignments to a TSV file
AverageExpression

Averaged gene expression by identity class
SubsetColumn

Return a subset of columns for a matrix or data frame
ProjectDim

Project Dimensional reduction onto full dataset
VariableGenePlot

View variable genes
PrintPCA

Print the results of a PCA analysis
PCASigGenes

Significant genes from a PCA
PrintCalcVarExpRatioParams

Print Parameters Associated with CalcVarExpRatio
ReorderIdent

Reorder identity classes
ProjectPCA

Project Principal Components Analysis onto full dataset
MakeSparse

Make object sparse
SplitDotPlotGG

Split Dot plot visualization
ExtractField

Extract delimiter information from a string.
PCHeatmap

Principal component heatmap
ICALoad

ICA Gene Loadings Accessor Function
FitGeneK

Build mixture models of gene expression
FindVariableGenes

Identify variable genes
PCElbowPlot

Quickly Pick Relevant PCs
SubsetData

Return a subset of the Seurat object
ScaleData

Scale and center the data.
PrintDMParams

Print Diffusion Map Calculation Parameters
GetGeneLoadings

Dimensional Reduction Gene Loadings Accessor Function
RidgePlot

Single cell ridge plot
GetDimReduction

Dimensional Reduction Accessor Function
RunCCA

Perform Canonical Correlation Analysis
PrintPCAParams

Print PCA Calculation Parameters
ScaleDataR

Old R based implementation of ScaleData. Scales and centers the data
WhichCells

Identify cells matching certain criteria
show

show method for seurat
SetAllIdent

Switch identity class definition to another variable
ExpSD

Calculate the standard deviation of logged values
VizDimReduction

Visualize Dimensional Reduction genes
zfRenderSeurat

Zebrafish analysis functions
ColorTSNESplit

Color tSNE Plot Based on Split
CreateSeuratObject

Initialize and setup the Seurat object
DimTopGenes

Find genes with highest scores for a given dimensional reduction technique
DimTopCells

Find cells with highest scores for a given dimensional reduction technique
ExpMean

Calculate the mean of logged values
GenePlot

Scatter plot of single cell data
MergeNode

Merge childen of a node
ICAPlot

Plot ICA map
ValidateClusters

Cluster Validation
Shuffle

Shuffle a vector
MergeSeurat

Merge Seurat Objects
JackStraw

Determine statistical significance of PCA scores.
NormalizeData

Normalize Assay Data
PrintICA

Print the results of a ICA analysis
NumberClusters

Convert the cluster labels to a numeric representation
PrintDim

Print the results of a dimensional reduction analysis
PCTopCells

Find cells with highest PCA scores
RefinedMapping

Quantitative refinement of spatial inferences
PrintFindClustersParams

Print FindClusters Calculation Parameters
RunTSNE

Run t-distributed Stochastic Neighbor Embedding
RemoveFromTable

Remove data from a table
SampleUMI

Sample UMI
Seurat-deprecated

Deprecated function(s) in the Seurat package
FindMarkers

Gene expression markers of identity classes
OldDoHeatmap

Gene expression heatmap
FindMarkersNode

Gene expression markers of identity classes defined by a phylogenetic clade
GenesInCluster

GenesInCluster
RunMultiCCA

Perform Canonical Correlation Analysis with more than two groups
MarkerTest

ROC-based marker discovery
JackStrawPlot

JackStraw Plot
cc.genes

Cell cycle genes
ValidateSpecificClusters

Specific Cluster Validation
MatrixRowShuffle

Independently shuffle values within each row of a matrix
seurat

The Seurat Class
pbmc_small

A small example version of the PBMC dataset
PCAEmbed

PCA Cell Embeddings Accessor Function
VizPCA

Visualize PCA genes
PoissonDETest

Poisson test for UMI-count based data
SubsetRow

Return a subset of rows for a matrix or data frame
PrintAlignSubspaceParams

Print AlignSubspace Calculation Parameters
PurpleAndYellow

A purple and yellow color palette
PrintICAParams

Print ICA Calculation Parameters
Read10X

Load in data from 10X
RunPCA

Run Principal Component Analysis on gene expression using IRLBA
VizICA

Visualize ICA genes
TSNEPlot

Plot tSNE map
WilcoxDETest

Differential expression using Wilcoxon Rank Sum