50% off | Unlimited Data & AI Learning
Get 50% off unlimited learning

StratifiedMedicine (version 0.1.3)

param_dr: Parameter Estimation: Double-robust estimator

Description

For each identified subgroup and in the overall population, use the double robust estimator (Funk et al 2011). Usable for continuous and binary outcomes, specifically for the estimand E(Y|X,A=1)-E(Y|X,A=0).

Usage

param_dr(Y, A, X, mu_hat, Subgrps, alpha_ovrl, alpha_s, ...)

Arguments

Y

The outcome variable. Must be numeric or survival (ex; Surv(time,cens) )

A

Treatment variable. (a=1,...A)

X

Covariate space.

mu_hat

Patient-level estimates (See PLE_models)

Subgrps

Identified subgroups (can be the overall population)

alpha_ovrl

Two-sided alpha level for overall population

alpha_s

Two-sided alpha level at subgroup

...

Any additional parameters, not currently passed through.

Value

Data-set with parameter estimates (average treatment effect) and corresponding variability metrics, for overall and subgroups. Subgrps=0 corresponds to the overall population by default.

  • param.dat - Parameter estimates and variability metrics (est, SE, LCL/UCL = lower/upper confidence limits, pval = p-value).

Examples

Run this code
# NOT RUN {
library(StratifiedMedicine)

## Continuous ##
dat_ctns = generate_subgrp_data(family="gaussian")
Y = dat_ctns$Y
X = dat_ctns$X
A = dat_ctns$A

## Estimate PLEs (ranger) ##
res_ranger = ple_train(Y, A, X, Xtest=X, ple="ple_ranger")

## Identify Subgroups: MOB (lmtree) ##
res_lmtree = submod_train(Y, A, X, Xtest=X, submod="submod_lmtree")

## Parameter-estimation ##
params = param_dr(Y, A, X, mu_hat = res_ranger$mu_train,
                  Subgrps = res_lmtree$Subgrps.train, alpha_ovrl=0.05,
                  alpha_s=0.05)
params

# }

Run the code above in your browser using DataLab