Learn R Programming

⚠️There's a newer version (1.0.5) of this package.Take me there.

StratifiedMedicine

The goal of StratifiedMedicine is to develop analytic and visualization tools to aid in stratified and personalized medicine. Stratified medicine aims to find subsets or subgroups of patients with similar treatment effects, for example responders vs non-responders, while personalized medicine aims to understand treatment effects at the individual level (does a specific individual respond to the study treatment?). Development of this package is ongoing.

Currently, the main algorithm in this package is “PRISM” (Patient Response Identifiers for Stratified Medicine; Jemielita and Mehrotra 2019 in progress). Given a data-structure of (Y,A,X) (outcome, treatments, covariates), PRISM is a five step procedure:

  1. Estimand: Determine the question or estimand of interest. For example, θ0 = E(Y|A = 1)−E(Y|A = 0), where A is a binary treatment variable. While this isn't an explicit step in the PRISM function, the question of interest guides how to set up PRISM.

  2. Filter (filter): Reduce covariate space by removing variables unrelated to outcome/treatment.

  3. Patient-level estimate (ple): Estimate counterfactual patient-level quantities, for example the individual treatment effect, θ(x)=E(Y|X = x, A = 1)−E(Y|X = x, A = 0).

  4. Subgroup model (submod): Partition the data into subsets of patients (likely with similar treatment effects).

  5. Parameter estimation and inference (param): For the overall population and discovered subgroups, output point estimates and variability metrics. These outputs are crucial for Go-No-Go decision making.

Installation

You can install the released version of StratifiedMedicine from CRAN with:

install.packages("StratifiedMedicine")

And the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("thomasjemielita/StratifiedMedicine")

Example: Continuous Outcome with Binary Treatment

Suppose the estimand or question of interest is the average treatment effect, θ0 = E(Y|A = 1)−E(Y|A = 0). The goal is to understand whether there is any treatment heterogeneity across patients and if there are any distinct subgroups with similar responses. In this example, we simulate continuous data where roughly 30% of the patients receive no treatment-benefit for using A = 1 vs A = 0. Responders vs non-responders are defined by the continuous predictive covariates X1 and X2 for a total of four subgroups. Subgroup treatment effects are: θ1 = 0 (X1 ≤ 0, X2 ≤ 0), θ2 = 0.25(X1 > 0, X2 ≤ 0), θ3 = 0.45(X1 ≤ 0, X2 > 0), θ4 = 0.65(X1 > 0, X2 > 0).

library(StratifiedMedicine)
## basic example code
dat_ctns = generate_subgrp_data(family="gaussian")
Y = dat_ctns$Y
X = dat_ctns$X # 50 covariates, 46 are noise variables, X1 and X2 are truly predictive
A = dat_ctns$A # binary treatment, 1:1 randomized 

# PRISM Default: filter_glmnet, ple_ranger, submod_lmtree, param_ple #
res0 = PRISM(Y=Y, A=A, X=X)
#> Observed Data
#> Filtering: filter_glmnet
#> PLE: ple_ranger
#> Subgroup Identification: submod_lmtree
#> Parameter Estimation: param_ple
## Plot the distribution of PLEs ###
plot(res0, type="PLE:density") # Density plot of PLEs #
plot(res0, type="PLE:waterfall") # waterfall plot of PLEs
## Plot of the subgroup model (lmtree) ##
plot(res0$submod.fit$mod)
## Overall/subgroup specific parameter estimates/inference
res0$param.dat
#>    Subgrps   N          estimand        est         SE         LCL
#> 1        0 800          E(Y|A=0) 1.63776866 0.04569877  1.54806484
#> 2        0 800          E(Y|A=1) 1.84286992 0.04866618  1.74734124
#> 3        0 800 E(Y|A=1)-E(Y|A=0) 0.20510125 0.06328619  0.08087441
#> 4        3 149          E(Y|A=0) 1.28263595 0.11176578  1.06177307
#> 5        3 149          E(Y|A=1) 1.31794039 0.10980919  1.10094399
#> 6        3 149 E(Y|A=1)-E(Y|A=0) 0.03530445 0.15439447 -0.26979794
#> 7        4 277          E(Y|A=0) 1.60937815 0.06712763  1.47723094
#> 8        4 277          E(Y|A=1) 1.67799950 0.07693142  1.52655259
#> 9        4 277 E(Y|A=1)-E(Y|A=0) 0.06862135 0.10088192 -0.12997442
#> 10       7  99          E(Y|A=0) 1.59590822 0.14128296  1.31553678
#> 11       7  99          E(Y|A=1) 1.92893256 0.13048087  1.66999752
#> 12       7  99 E(Y|A=1)-E(Y|A=0) 0.33302434 0.18994596 -0.04391723
#> 13       8 168          E(Y|A=0) 1.76751942 0.08920057  1.59141332
#> 14       8 168          E(Y|A=1) 2.04252025 0.09776124  1.84951308
#> 15       8 168 E(Y|A=1)-E(Y|A=0) 0.27500084 0.13063657  0.01708886
#> 16       9 107          E(Y|A=0) 2.04080610 0.13504592  1.77306443
#> 17       9 107          E(Y|A=1) 2.60756289 0.11565560  2.37826441
#> 18       9 107 E(Y|A=1)-E(Y|A=0) 0.56675679 0.17669715  0.21643749
#>          UCL          pval
#> 1  1.7274725 1.879424e-168
#> 2  1.9383986 1.723772e-180
#> 3  0.3293281  1.241074e-03
#> 4  1.5034988  3.314673e-22
#> 5  1.5349368  1.324710e-23
#> 6  0.3404068  8.194458e-01
#> 7  1.7415254  1.972697e-69
#> 8  1.8294464  5.334423e-62
#> 9  0.2672171  4.969388e-01
#> 10 1.8762797  1.916696e-19
#> 11 2.1878676  1.077698e-26
#> 12 0.7099659  8.268452e-02
#> 13 1.9436255  1.028800e-45
#> 14 2.2355274  1.856343e-48
#> 15 0.5329128  3.678032e-02
#> 16 2.3085478  3.359840e-28
#> 17 2.8368614  3.054161e-42
#> 18 0.9170761  1.770848e-03
## Forest plot: Overall/subgroup specific parameter estimates (CIs)
plot(res0, type="forest")

## Heatmap of PLEs #
grid.data = expand.grid(X1 = seq(min(X$X1), max(X$X1), by=0.30),
                    X2 = seq(min(X$X2), max(X$X2), by=0.30))
plot(res0, type="heatmap", grid.data = grid.data)
#> $heatmap.est
#> 
#> $heatmap.prob

Overall, PRISM provides information at the patient-level, the subgroup-level (if any), and the overall population. While there are defaults in place, the user can also input their own functions/model wrappers into the PRISM algorithm. For more details and more examples, we refer the reader to the vignette, PRISM_vignette.

Copy Link

Version

Install

install.packages('StratifiedMedicine')

Monthly Downloads

281

Version

0.1.3

License

GPL-3

Issues

Pull Requests

Stars

Forks

Maintainer

Thomas Jemielita

Last Published

September 4th, 2019

Functions in StratifiedMedicine (0.1.3)

param_dr

Parameter Estimation: Double-robust estimator
PRISM_resamp

PRISM (Resample): Patient Response Identifier for Stratified Medicine
PRISM_train

PRISM (Train): Patient Response Identifier for Stratified Medicine
filter_ranger

Filter: Random Forest (ranger) Variable Importance
PRISM

PRISM: Patient Response Identifier for Stratified Medicine
filter_glmnet

Filter: Elastic Net (glmnet)
param_lm

Parameter Estimation: Linear Regression
param_combine

Overall Population Estimate: Aggregating Subgroup-Specific Parameter Estimates
param_cox

Parameter Estimation: Cox Regression
generate_subgrp_data

Generate Subgroup Data-sets
ple_train

Patient-level Estimates: Train Model
ple_ranger

Patient-level Estimates: Ranger
predict.ple_causal_forest

Predict Patient-level Estimates: Causal Forest
ple_glmnet

Patient-level Estimates: Elastic Net (glmnet)
predict.submod_weibull

Predict submod: Model-based partitioning (Weibull)
summary.PRISM

PRISM: Patient Response Identifier for Stratified Medicine (Summary)
predict.submod_train

Subgroup Identification: Train Model (Predictions)
predict.ple_bart

Predict Patient-level Estimates: BART
predict.PRISM

PRISM: Patient Response Identifier for Stratified Medicine (Predictions)
predict.submod_otr

Predict submod: OTR CTREE
predict.submod_rpart

Predict submod: rpart
predict.ple_glmnet

Predict Patient-level Estimates: glmnet
param_rmst

Parameter Estimation: Restricted Mean Survival Time (RMST)
predict.ple_train

Patient-level Estimates Model: Prediction
predict.ple_ranger

Predict Patient-level Estimates: Ranger
param_ple

Parameter Estimation: Patient-Level Estimates
ple_bart

Patient-level Estimates: BART
ple_causal_forest

Patient-level Estimates: Causal Forest
submod_train

Subgroup Identification: Train Model
submod_weibull

Subgroup Identification: Model-based partitioning (Weibull)
plot.PRISM

plot.PRISM
predict.submod_ctree

Predict submod: CTREE
submod_otr

Subgroup Identification: Optimal Treatment Regime (through ctree)
submod_rpart

Subgroup Identification: CART (rpart)
submod_ctree

Subgroup Identification: Conditional Inference Trees (ctree)
predict.submod_lmtree

Predict submod: lmtree
submod_lmtree

Subgroup Identification: Model-based partitioning (lmtree)