Uses the MOB (with weibull loss function) algorithm to identify subgroups (Zeileis, Hothorn, Hornik 2008; Seibold, Zeileis, Hothorn 2016). Usable for survival outcomes.
submod_weibull(Y, A, X, Xtest, mu_train, minsize = floor(dim(X)[1] *
0.1), maxdepth = 4, ...)
The outcome variable. Must be numeric or survival (ex; Surv(time,cens) )
Treatment variable. (a=1,...A)
Covariate space.
Test set
Patient-level estimates (See PLE_models)
Minimum number of observations in a tree node. Default = floor( dim(train)[1]*0.05 )
Maximum depth of any node in the tree (default=4)
Any additional parameters, not currently passed through.
Trained MOB (Weibull) model.
mod - MOB (Weibull) model object
# NOT RUN {
library(StratifiedMedicine)
# }
# NOT RUN {
## Load TH.data (no treatment; generate treatment randomly to simulate null effect) ##
data("GBSG2", package = "TH.data", envir = e <- new.env() )
surv.dat = e$GBSG2
## Design Matrices ###
Y = with(surv.dat, Surv(time, cens))
X = surv.dat[,!(colnames(surv.dat) %in% c("time", "cens")) ]
A = rbinom( n = dim(X)[1], size=1, prob=0.5 )
res_weibull = submod_weibull(Y, A, X, Xtest=X, family="survival")
plot(res_weibull$mod)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab