TopologyGSA(x, group, pathways, type, preparePaths=TRUE, norm.method=NULL, test.method=NULL , method="mean", alpha=0.05, testCliques=FALSE, ..., both.directions=TRUE, maxNodes=150, minEdges=0, commonTh=2, filterSPIA=FALSE, convertTo="none", convertBy=NULL )
ExpressionSet
object or a gene expression data matrix or count matrix, rows refer to genes, columns to samples
graphite
package or created by preparePathways()
"MA"
for microarray and "RNASeq"
for RNA-Seq
preparePathways()
. Use FALSE
, if you have done this transformation separatelyNULL
then TMM-normalization is performed. Possible values are: "TMM", "DESeq2", "rLog", "none"
NULL
then "voomlimma"
is used. Possible values are: "DESeq2", "voomlimma", "vstlimma", "edgeR"
. This analysis is needed only for the visualization. "var"
and "mean"
. Determine the type of test used by topologyGSA.
TRUE
, then the test is also performed on individual cliques. It can be very computationally complex.preparePathways()
testCliques=TRUE
, a list where each slot contains the pvalues and a list of cliques in one pathway. NULL
otherwiseThe user can further specify for the mean test:
Or for the variance test:
## Not run:
# if (require(DEGraph)) {
# data("Loi2008_DEGraphVignette")
# pathways<-pathways("hsapiens","biocarta")[1:10]
#
#
# TopologyGSA(exprLoi2008, classLoi2008, pathways, type="MA", method="mean", alpha=0.05, perms=200)
# TopologyGSA(exprLoi2008, classLoi2008, pathways, type="MA", method="mean", alpha=0.05, perms=200, testCliques=TRUE)
# }
#
# if (require(gageData)) {
#
# data(hnrnp.cnts)
# group<-c(rep("sample",4), rep("control",4))
# hnrnp.cnts<-hnrnp.cnts[rowSums(hnrnp.cnts)>0,]
# pathways<-pathways("hsapiens","biocarta")[1:10]
# TopologyGSA(hnrnp.cnts, group,pathways, type="RNASeq",method="mean", alpha=0.05,
# perms=200, norm.method="TMM")
# }
# ## End(Not run)
Run the code above in your browser using DataLab