powered by
For a multi-arm dose response design, we use a linear contrast coefficients ci with \(\sum ci = 0\).
H0: L(mu)=\(\sum ci \times \mu_i = 0\)
Ha: L(mu)=\(\sum ci \times \mu_i = \epsilon\), not equal to 0
Dose.Response.Linear(alpha, beta, sigma, mui, ci, fi)
significance level
power = 1-beta
standard deviation for the population
mui is the population mean for group i.
a linear contrast coefficients ci with \(\sum ci = 0\).
fi=ni/n is the sample size fraction for the ith group
Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003
# NOT RUN { mui=c(0.05,0.12,0.14,0.16); ci=c(-6,1,2,3); Example.11.1<-Dose.Response.Linear(alpha=0.05,beta=0.2,sigma=0.22,mui=mui,ci=ci,fi=1/4) Example.11.1 #178 # }
Run the code above in your browser using DataLab