Learn R Programming

TrialSize (version 1.3)

TwoSampleCrossOver.NIS: Two Sample Crossover Design Test for Non-Inferiority/Superiority

Description

Ho: \(|margin| \ge delta \) Ha: |margin| < delta

if delta >0, the rejection of Null Hypothesis indicates the superiority of the test over the control;

if delta <0, the rejection of the null hypothesis implies the non-inferiority of the test against the control.

Usage

TwoSampleCrossOver.NIS(alpha, beta, sigma, delta, margin)

Arguments

alpha

significance level

beta

power = 1-beta

sigma

standard deviation in crossover design

delta

the superiority or non-inferiority margin

margin

\(margin=\mu_2-\mu_1\)

the true mean difference between a test mu2 and a control mu1

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

Run this code
# NOT RUN {
Example.3.3.4<-TwoSampleCrossOver.NIS(0.05,0.2,0.2,-0.2,-0.1)
Example.3.3.4 # 13
# }

Run the code above in your browser using DataLab