Join us for
RADAR: AI Edition

TrialSize (version 1.4)

OneSampleMean.NIS: One Sample Mean Test for Non-Inferiority/Superiority

Description

Ho: \( margin \le delta \) Ha: margin > delta

if delta >0, the rejection of Null Hypothesis indicates the true mean is superior over the reference value mu0;

if delta <0, the rejection of the null hypothesis implies the true mean is non-inferior against the reference value mu0.

Usage

OneSampleMean.NIS(alpha, beta, sigma, margin, delta)

Arguments

alpha

significance level

beta

power = 1-beta

sigma

standard deviation

delta

the superiority or non-inferiority margin

margin

\(margin=\bar{x}-\mu_0\)

the difference between the true mean response of a test \(\bar{x}\) and a reference value \(\mu_0\)

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

Run this code
# NOT RUN {
OneSampleMean.NIS(0.05,0.2,1,0.5,-0.5)
# 7

# }

Run the code above in your browser using DataLab