Learn R Programming

TrialSize (version 1.4)

PBE: Population Bioequivalence

Description

Consider 2 by 2 crossover design.

H0: lamda >= 0

Ha: lamda < 0

Usage

PBE(alpha, beta, sigma1.1, sigmatt, sigmatr, sigmabt, sigmabr, rho, a, delta, lamda)

Arguments

alpha

significance level

beta

power = 1-beta

sigma1.1

\(\sigma_{a.b}^2=\sigma_{D}^2+a\sigma_{WT}^2+b\sigma_{WR}^2\). Here a=b=1.

sigmatt

\(\sigma_{tt}^2=\sigma_{BT}^2+\sigma_{WT}^2\), \(\sigma_{wt}^2\) is the within-subjects variance in test formulation

sigmatr

\(\sigma_{tr}^2=\sigma_{BR}^2+\sigma_{WR}^2\), \(\sigma_{wr}^2\) is the within-subjects variance in reference formulation

sigmabt

\(\sigma_{bt}^2\) is the between-subjects variance in test formulation

sigmabr

\(\sigma_{br}^2\) is the between-subjects variance in reference formulation

rho

rho is the inter-subject correlation coefficient.

a

a= thetaPBE =1.74

delta

delta is the mean difference of AUC

lamda

\(lamda=delta^{2}+\sigma^2-\sigma_{TR}^2-thetaPBE*max(\sigma_{0}^2,\sigma_{TR}^2)\)

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

Run this code
# NOT RUN {
Example.10.3<-PBE(0.05,0.2,0.2,sqrt(0.17),sqrt(0.17),0.4,0.4,0.75,1.74,0.00,-0.2966)
Example.10.3
# 12

# }

Run the code above in your browser using DataLab