# \donttest{
# optimize the 'cost' parameter of an SVM on
# the 'iris' data set
res <- tunePareto(classifier = tunePareto.svm(),
data = iris[, -ncol(iris)],
labels = iris[, ncol(iris)],
cost=c(0.01,0.05,0.1,0.5,1,5,10,50,100),
objectiveFunctions=list(cvWeightedError(10, 10),
cvSensitivity(10, 10, caseClass="setosa"),
cvSpecificity(10, 10, caseClass="setosa")))
# create desirability functions
# aggregate functions in desirability index (e.g. harrington desirability function)
# here, for the sake of simplicity a random number generator
di <- function(x) {runif(1)}
# rank all tuning results according to their desirabilities
print(rankByDesirability(res,di,optimalOnly=FALSE))
# }
Run the code above in your browser using DataLab