showClass("CancerEngine")
set.seed(391629)
## Set up survival outcome; baseline is exponential
sm <- SurvivalModel(baseHazard=1/5, accrual=5, followUp=1)
## Build a CancerModel with 6 subtypes
nBlocks <- 20 # number of possible hits
cm <- CancerModel(name="cansim",
nPossible=nBlocks,
nPattern=6,
OUT = function(n) rnorm(n, 0, 1),
SURV= function(n) rnorm(n, 0, 1),
survivalModel=sm)
## Include 100 blocks/pathways that are not hit by cancer
nTotalBlocks <- nBlocks + 100
## Assign values to hyperparameters
## block size
blockSize <- round(rnorm(nTotalBlocks, 100, 30))
## log normal mean hypers
mu0 <- 6
sigma0 <- 1.5
## log normal sigma hypers
rate <- 28.11
shape <- 44.25
## block corr
p <- 0.6
w <- 5
## Set up the baseline Engine
rho <- rbeta(nTotalBlocks, p*w, (1-p)*w)
base <- lapply(1:nTotalBlocks,
function(i) {
bs <- blockSize[i]
co <- matrix(rho[i], nrow=bs, ncol=bs)
diag(co) <- 1
mu <- rnorm(bs, mu0, sigma0)
sigma <- matrix(1/rgamma(bs, rate=rate, shape=shape), nrow=1)
covo <- co *(t(sigma) %*% sigma)
MVN(mu, covo)
})
eng <- Engine(base)
## Alter the means if there is a hit
altered <- alterMean(eng, normalOffset, delta=0, sigma=1)
## Build the CancerEngine using character strings
object <- CancerEngine(cm, "eng", "altered")
## Or build it using the actual Engine components
ob <- CancerEngine(cm, eng, altered)
summary(object)
summary(ob)
## Simulate the data
dset <- rand(object, 20)
summary(dset$clinical)
summary(dset$data[, 1:3])
Run the code above in your browser using DataLab