Backward elimination algorithm function for screening
second.step.detect(
data,
pts,
omega,
lambda,
mu,
alpha_L = 0.25,
verbose = FALSE
)
A list object includes
Final selected change points
Values of information criterion
a n by p dataset matrix
a vector includes all candidate change points obtained by the first step
tuning parameter for the information criterion function
tuning parameter for sparse component estimation
tuning parameter for low rank component estimation
a numeric value, indicates the size of constraint space of low rank component
if TRUE, then it provides all information for current stage