Learn R Programming

VARDetect (version 0.1.8)

Multiple Change Point Detection in Structural VAR Models

Description

Implementations of Thresholded Block Segmentation Scheme (TBSS) and Low-rank plus Sparse Two Step Procedure (LSTSP) algorithms for detecting multiple changes in structural VAR models. The package aims to address the problem of change point detection in piece-wise stationary VAR models, under different settings regarding the structure of their transition matrices (autoregressive dynamics); specifically, the following cases are included: (i) (weakly) sparse, (ii) structured sparse, and (iii) low rank plus sparse. It includes multiple algorithms and related extensions from Safikhani and Shojaie (2020) and Bai, Safikhani and Michailidis (2020) .

Copy Link

Version

Install

install.packages('VARDetect')

Monthly Downloads

72

Version

0.1.8

License

GPL-2

Maintainer

Yue Bai

Last Published

June 15th, 2024

Functions in VARDetect (0.1.8)

prox.sparse.func

Proximal function with l1-norm penalty updating
first.step.detect

First step rolling window function
lstsp

Main function for the low rank plus sparse structure VAR model
nuclear.pen

Nuclear norm penalty for low-rank component
simu_var

Generate VAR(p) model data with break points
plot.VARDetect.result

Plotting the output from VARDetect.result class
simu_lstsp

Function to deploy simulation with LSTSP algorithm
print.VARDetect.result

Function to print the change points estimated by VARDetect
plot_matrix

Plot the AR coefficient matrix
shrinkage

Shrinkage function for sparse soft-thresholding
prox.nuclear.func.fLS

Proximal function for nuclear norm penalty
shrinkage.lr

Shrinkage function for low-rank soft-thresholding
pred.block

Prediction function (block)
simu_tbss

Simulation function for TBSS algorithm
pred

Prediction function (single observation)
first.step.blocks.group

block fused sparse group lasso step (first step).
obj.func

Objective function
sparse.pen

L1-norm penalty for sparse component
summary.VARDetect.result

Function to summarize the change points estimated by VARDetect
weekly

weekly stock price data
fista.LpS

A function to solve low rank plus sparse model estimation using FISTA algorithm
remove.extra.pts

helper function for detection check
plot_density

Function to plot the sparsity levels for estimated model parameters
plot_granger

Function to plot Granger causality networks
second.step.detect

Backward elimination algorithm for screening in the second step
prox.nuclear.func

Proximal function with nuclear norm penalty updating
second.step.local

local screening step (second step).
tbss

Block segmentation scheme (BSS).
summary.VARDetect.simu.result

A function to summarize the results for simulation
third.step.exhaustive.search

Exhaustive search step (third step).
detection_check

Function for detection performance check
eeg

EEG signal data
block.finder

cluster the points by neighborhood size a_n
backward.selection

Backward selection function for the second screening step
break.var.lps

Auxiliary function to calculate loss at the estimated change points
cv.detect.LpS

Single change point detection for low-rank plus sparse model with cross-validation
detect.LpS

Single change point detection for low-rank plus sparse model structure
break.var.local.new

Compute local loss function.
gradf.func

Gradient function of quardratic loss
first.step.blocks

block fused lasso step (first step for BSS).
cv.separate

cross-validation index function, separate train and test sets
cv.tuning.selection

a function to apply cross-validation to select tuning parameter by minimizing SSE
eval_func

Evaluation function, return the performance of simulation results
hausdorff_check

Function for Hausdorff distance computation
lag_selection

Select the lag of the VAR model using total BIC method
fista.nuclear

A helper function for implementing FISTA algorithm to estimate low-rank matrix
f.func

Main loss function for quardratic loss
Q.func

An auxiliary function in FISTA algorithm
BIC

BIC and HBIC function