- nreps
A positive integer, indicating the number of simulation replications
- simu_method
the structure of time series: only available for "LS"
- nob
sample size
- k
dimension of transition matrix
- lags
lags of VAR time series. Default is 1.
- lags_vector
a vector of lags of VAR time series for each segment
- brk
a vector of break points with (nob+1) as the last element
- sigma
the variance matrix for error term
- skip
an argument to control the leading data points to obtain a stationary time series
- group_mats
transition matrix for group sparse case
- group_type
type for group lasso: "columnwise", "rowwise". Default is "columnwise".
- group_index
group index for group lasso.
- sparse_mats
transition matrix for sparse case
- sp_density
if we choose random pattern, we should provide the sparsity density for each segment
- signals
manually setting signal for each segment (including sign)
- rank
if we choose method is low rank plus sparse, we need to provide the ranks for each segment
- info_ratio
the information ratio leverages the signal strength from low rank and sparse components
- sp_pattern
a choice of the pattern of sparse component: diagonal, 1-off diagonal, random, custom
- singular_vals
singular values for the low rank components
- spectral_radius
to ensure the time series is piecewise stationary.
- alpha_L
a positive numeric value, indicating the restricted space of low rank component, default is 0.25
- lambda.1
tuning parameter for sparse component for the first step
- mu.1
tuning parameter for low rank component for the first step
- lambda.1.seq
a sequence of lambda to the left segment for cross-validation, it's not mandatory to provide
- mu.1.seq
a sequence of mu to the left segment, low rank component tuning parameter
- lambda.2
tuning parameter for sparse for the second step
- mu.2
tuning parameter for low rank for the second step
- lambda.3
tuning parameter for estimating sparse components
- mu.3
tuning parameter for estimating low rank components
- omega
tuning parameter for information criterion, the larger of omega, the fewer final selected change points
- h
window size of the first rolling window step
- step.size
rolling step
- tol
tolerance for the convergence in the second screening step, indicates when to stop
- niter
the number of iterations required for FISTA algorithm
- backtracking
A boolean argument to indicate use backtrack to FISTA model
- rolling.skip
The number of observations need to skip near the boundaries
- cv
A boolean argument, indicates whether the user will apply cross validation to select tuning parameter, default is FALSE
- nfold
An positive integer, the number of folds for cross validation
- verbose
If is TRUE, then it will print all information about current step.