
Last chance! 50% off unlimited learning
Sale ends in
Maximum likelihood estimation of the 3-parameter beta II distribution.
betaII(lscale = "loglink", lshape2.p = "loglink", lshape3.q = "loglink",
iscale = NULL, ishape2.p = NULL, ishape3.q = NULL, imethod = 1,
gscale = exp(-5:5), gshape2.p = exp(-5:5),
gshape3.q = seq(0.75, 4, by = 0.25),
probs.y = c(0.25, 0.5, 0.75), zero = "shape")
Parameter link functions applied to the
(positive) parameters scale
, p
and q
.
See Links
for more choices.
See CommonVGAMffArguments
for information.
See CommonVGAMffArguments
for information.
See CommonVGAMffArguments
for information.
An object of class "vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
,
and vgam
.
The 3-parameter beta II is the 4-parameter
generalized beta II distribution with shape parameter
The beta II distribution has density
scale
,
and the others are shape parameters.
The mean is
Kleiber, C. and Kotz, S. (2003) Statistical Size Distributions in Economics and Actuarial Sciences, Hoboken, NJ, USA: Wiley-Interscience.
betaff
,
genbetaII
,
dagum
,
sinmad
,
fisk
,
inv.lomax
,
lomax
,
paralogistic
,
inv.paralogistic
.
# NOT RUN {
bdata <- data.frame(y = rsinmad(2000, shape1.a = 1, shape3.q = exp(2),
scale = exp(1))) # Not genuine data!
fit <- vglm(y ~ 1, betaII, data = bdata, trace = TRUE)
fit <- vglm(y ~ 1, betaII(ishape2.p = 0.7, ishape3.q = 0.7),
data = bdata, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)
# }
Run the code above in your browser using DataLab