Estimate the correlation parameter of the (bivariate) Gaussian copula distribution by maximum likelihood estimation.
binormalcop(lrho = "rhobitlink", irho = NULL, imethod = 1,
parallel = FALSE, zero = NULL)
Details at CommonVGAMffArguments
.
See Links
for more link function choices.
Details at CommonVGAMffArguments
.
If parallel = TRUE
then the constraint is applied to the
intercept too.
An object of class "vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
and vgam
.
The cumulative distribution function is
pbinorm
),
and pnorm
).
The support of the function is the interior of the unit square;
however, values of 0 and/or 1 are not allowed.
The marginal distributions are the standard uniform distributions.
When
This VGAM family function can handle multiple responses, for example, a six-column matrix where the first 2 columns is the first out of three responses, the next 2 columns being the next response, etc.
Schepsmeier, U. and Stober, J. (2013) Derivatives and Fisher information of bivariate copulas. Statistical Papers.
# NOT RUN {
nn <- 1000
ymat <- rbinormcop(n = nn, rho = rhobitlink(-0.9, inverse = TRUE))
bdata <- data.frame(y1 = ymat[, 1],
y2 = ymat[, 2],
y3 = ymat[, 1],
y4 = ymat[, 2],
x2 = runif(nn))
summary(bdata)
# }
# NOT RUN {
plot(ymat, col = "blue")
# }
# NOT RUN {
fit1 <- vglm(cbind(y1, y2, y3, y4) ~ 1, # 2 responses, e.g., (y1,y2) is the first
fam = binormalcop,
crit = "coef", # Sometimes a good idea
data = bdata, trace = TRUE)
coef(fit1, matrix = TRUE)
Coef(fit1)
head(fitted(fit1))
summary(fit1)
# Another example; rho is a linear function of x2
bdata <- transform(bdata, rho = -0.5 + x2)
ymat <- rbinormcop(n = nn, rho = with(bdata, rho))
bdata <- transform(bdata, y5 = ymat[, 1],
y6 = ymat[, 2])
fit2 <- vgam(cbind(y5, y6) ~ s(x2), data = bdata,
binormalcop(lrho = "identitylink"), trace = TRUE)
# }
# NOT RUN {
plot(fit2, lcol = "blue", scol = "orange", se = TRUE, las = 1)
# }
Run the code above in your browser using DataLab