
Last chance! 50% off unlimited learning
Sale ends in
Maximum likelihood estimation of the 1-parameter log F distribution.
logF(lshape1 = "loglink", lshape2 = "loglink",
ishape1 = NULL, ishape2 = 1, imethod = 1)
Parameter link functions for
the shape parameters.
Called Links
for more choices.
Optional initial values for the shape parameters.
If given, it must be numeric and values are recycled to the
appropriate length.
The default is to choose the value internally.
See CommonVGAMffArguments
for more information.
Initialization method.
Either the value 1, 2, or ….
See CommonVGAMffArguments
for more information.
An object of class "vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
and vgam
.
The density for this distribution is
beta
.
Jones, M. C. (2008). On a class of distributions with simple exponential tails. Statistica Sinica, 18(3), 1101--1110.
# NOT RUN {
nn <- 1000
ldata <- data.frame(y1 = rnorm(nn, m = +1, sd = exp(2)), # Not proper data
x2 = rnorm(nn, m = -1, sd = exp(2)),
y2 = rnorm(nn, m = -1, sd = exp(2))) # Not proper data
fit1 <- vglm(y1 ~ 1 , logF, data = ldata, trace = TRUE)
fit2 <- vglm(y2 ~ x2, logF, data = ldata, trace = TRUE)
coef(fit2, matrix = TRUE)
summary(fit2)
vcov(fit2)
head(fitted(fit1))
with(ldata, mean(y1))
max(abs(head(fitted(fit1)) - with(ldata, mean(y1))))
# }
Run the code above in your browser using DataLab