Fits a zero-altered geometric distribution based on a conditional model involving a Bernoulli distribution and a positive-geometric distribution.
zageometric(lpobs0 = "logitlink", lprob = "logitlink",
type.fitted = c("mean", "prob", "pobs0", "onempobs0"),
imethod = 1, ipobs0 = NULL, iprob = NULL, zero = NULL)
zageometricff(lprob = "logitlink", lonempobs0 = "logitlink",
type.fitted = c("mean", "prob", "pobs0", "onempobs0"),
imethod = 1, iprob = NULL, ionempobs0 = NULL, zero = "onempobs0")
Link function for the parameter pobs0
or phi
here.
See Links
for more choices.
Parameter link function applied to the probability of success,
called prob
or Links
for more choices.
See CommonVGAMffArguments
and fittedvlm
for information.
Optional initial values for the parameters. If given, they must be in range. For multi-column responses, these are recycled sideways.
Corresponding argument for the other parameterization. See details below.
An object of class "vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
,
and vgam
.
The fitted.values
slot of the fitted object,
which should be extracted by the generic function fitted
, returns
the mean type.fitted = "pobs0"
then
Convergence for this VGAM family function seems to depend quite strongly on providing good initial values.
Inference obtained from summary.vglm
and summary.vgam
may or may not be correct. In particular, the p-values, standard errors
and degrees of freedom may need adjustment. Use simulation on artificial
data to check that these are reasonable.
The response
The input can be a matrix (multiple responses).
By default, the two linear/additive predictors
of zageometric
are
The VGAM family function zageometricff()
has a few
changes compared to zageometric()
.
These are:
(i) the order of the linear/additive predictors is switched so the
geometric probability comes first;
(ii) argument onempobs0
is now 1 minus the probability of an observed 0,
i.e., the probability of the positive geometric distribution,
i.e., onempobs0
is 1-pobs0
;
(iii) argument zero
has a new default so that the pobs0
is intercept-only by default.
Now zageometricff()
is generally recommended over
zageometric()
.
Both functions implement Fisher scoring and can handle
multiple responses.
dzageom
,
geometric
,
zigeometric
,
dgeom
,
CommonVGAMffArguments
,
simulate.vlm
.
# NOT RUN {
zdata <- data.frame(x2 = runif(nn <- 1000))
zdata <- transform(zdata, pobs0 = logitlink(-1 + 2*x2, inverse = TRUE),
prob = logitlink(-2 + 3*x2, inverse = TRUE))
zdata <- transform(zdata, y1 = rzageom(nn, prob = prob, pobs0 = pobs0),
y2 = rzageom(nn, prob = prob, pobs0 = pobs0))
with(zdata, table(y1))
fit <- vglm(cbind(y1, y2) ~ x2, zageometric, data = zdata, trace = TRUE)
coef(fit, matrix = TRUE)
head(fitted(fit))
head(predict(fit))
summary(fit)
# }
Run the code above in your browser using DataLab