# NOT RUN {
#data
data(sampledata)
dim(Geno)#100 samples and 1000 markers
unique(Geno[1:(100*1000)])#coded as 0, 1, 2
#A single Kappa value is assumed for BL. A vector is returned.
hyperpara(Geno,0.5,"BL",0.01,Printinfo=TRUE)
#Phi is set to 1 as default. To change Phi, use BL.Phi.
hyperpara(Geno,0.5,"BL",0.01,BL.Phi=5)
#Calculate multiple hyperparameter value sets of BayesC assuming that Kappa is 0.01, 0.1, and 1.
#A matrix is returned.
hyperpara(Geno,0.5,"BayesC",c(0.01,0.1,1))
#The output vector can be used as the argument of vigor
Result<-vigor(Pheno$Height,Geno,"wBSR",hyperpara(Geno,0.5,"wBSR",0.01))
#Calculate multiple hyperparameter sets of SSVS
#assuming that Mvar is 0.5, Kappa is 0.01 and 0.1, and A is 0.9 and 0.99.
hyperpara(Geno,0.5,"SSVS",c(0.01,0.1),c(0.9,0.99))
#2 x 2 sets are created.
#Calculate hyperparameter values of BayesB
#assuming that Mvar is 0.5, and Kappa is 0.01. Inbred lines are analyzed.
hyperpara(Geno,0.5,"BayesB",0.01,f=1)
#Calculate hyperparameter values of EBL
#assuming that Mvar is 0.5, and Kappa is 0.01. Consider marker genotypes as general variables.
hyperpara(Geno,0.5,"EBL",0.01,Xtype="Var")
# }
Run the code above in your browser using DataLab