This function computes the theoretical tail dependence coefficients of a bivariate copula for given parameter values.
BiCopPar2TailDep(family, par, par2 = 0, obj = NULL,
check.pars = TRUE)
integer; single number or vector of size n
; defines the
bivariate copula family:
0
= independence copula
1
= Gaussian copula
2
= Student t copula (t-copula)
3
= Clayton copula
4
= Gumbel copula
5
= Frank copula
6
= Joe copula
7
= BB1 copula
8
= BB6 copula
9
= BB7 copula
10
= BB8 copula
13
= rotated Clayton copula (180 degrees; ``survival Clayton'')
14
= rotated Gumbel copula (180 degrees; ``survival Gumbel'')
16
= rotated Joe copula (180 degrees; ``survival Joe'')
17
= rotated BB1 copula (180 degrees; ``survival BB1'')
18
= rotated BB6 copula (180 degrees; ``survival BB6'')
19
= rotated BB7 copula (180 degrees; ``survival BB7'')
20
= rotated BB8 copula (180 degrees; ``survival BB8'')
23
= rotated Clayton copula (90 degrees)
24
= rotated Gumbel copula (90 degrees)
26
= rotated Joe copula (90 degrees)
27
= rotated BB1 copula (90 degrees)
28
= rotated BB6 copula (90 degrees)
29
= rotated BB7 copula (90 degrees)
30
= rotated BB8 copula (90 degrees)
33
= rotated Clayton copula (270 degrees)
34
= rotated Gumbel copula (270 degrees)
36
= rotated Joe copula (270 degrees)
37
= rotated BB1 copula (270 degrees)
38
= rotated BB6 copula (270 degrees)
39
= rotated BB7 copula (270 degrees)
40
= rotated BB8 copula (270 degrees)
104
= Tawn type 1 copula
114
= rotated Tawn type 1 copula (180 degrees)
124
= rotated Tawn type 1 copula (90 degrees)
134
= rotated Tawn type 1 copula (270 degrees)
204
= Tawn type 2 copula
214
= rotated Tawn type 2 copula (180 degrees)
224
= rotated Tawn type 2 copula (90 degrees)
234
= rotated Tawn type 2 copula (270 degrees)
numeric; single number or vector of size n
; copula parameter.
numeric; single number or vector of size n
; second
parameter for bivariate copulas with two parameters (t, BB1, BB6, BB7, BB8,
Tawn type 1 and type 2; default: par2 = 0
). par2
should be an
positive integer for the Students's t copula family = 2
.
BiCop
object containing the family and parameter
specification.
logical; default is TRUE
; if FALSE
, checks
for family/parameter-consistency are omitted (should only be used with
care).
Lower tail dependence coefficient for the given
bivariate copula family
and parameter(s) par
, par2
:
$$ \lambda_L = \lim_{u\searrow 0}\frac{C(u,u)}{u} $$
Upper tail dependence coefficient for the given bivariate
copula family family
and parameter(s) par
, par2
:
$$ \lambda_U = \lim_{u\nearrow 1}\frac{1-2u+C(u,u)}{1-u} $$
1
- -
2
\(2t_{\nu+1}\left(-\sqrt{\nu+1}\sqrt{\frac{1-\theta}{1+\theta}}\right)\)\(2t_{\nu+1}\left(-\sqrt{\nu+1}\sqrt{\frac{1-\theta}{1+\theta}}\right)\)
3
\(2^{-1/\theta}\) -
4
- \(2-2^{1/\theta}\)
5
- -
6
- \(2-2^{1/\theta}\)
7
\(2^{-1/(\theta\delta)}\) \(2-2^{1/\delta}\)
8
- \(2-2^{1/(\theta\delta)}\)
9
\(2^{-1/\delta}\) \(2-2^{1/\theta}\)
10
- \(2-2^{1/\theta}\) if \(\delta=1\) otherwise 0
13
- \(2^{-1/\theta}\)
14
\(2-2^{1/\theta}\) -
16
\(2-2^{1/\theta}\) -
17
\(2-2^{1/\delta}\) \(2^{-1/(\theta\delta)}\)
18
\(2-2^{1/(\theta\delta)}\) -
19
\(2-2^{1/\theta}\) \(2^{-1/\delta}\)
20
\(2-2^{1/\theta}\) if \(\delta=1\) otherwise 0 -
23, 33
- - 24, 34
- -
26, 36
- -
27, 37
- -
28, 38
- -
29, 39
- -
30, 40
- -
104,204
- \(\delta+1-(\delta^{\theta}+1)^{1/\theta}\)
114, 214
\(1+\delta-(\delta^{\theta}+1)^{1/\theta}\) -
124, 224
- -
134, 234
- -
If the family and parameter specification is stored in a BiCop
object
obj
, the alternative version
BiCopPar2TailDep(obj)
can be used.
Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman and Hall, London.
# NOT RUN {
## Example 1: Gaussian copula
BiCopPar2TailDep(1, 0.7)
BiCop(1, 0.7)$taildep # alternative
## Example 2: Student-t copula
BiCopPar2TailDep(2, c(0.6, 0.7, 0.8), 4)
## Example 3: different copula families
BiCopPar2TailDep(c(3, 4, 6), 2)
# }
Run the code above in your browser using DataLab