data(kegg9)
## example analysis using aSPUM test.
g <- kegg9$gene.info[1,1] # SOAT1
## Take snps mapped on gene "SOAT1" from the information of gene.info and snp.info.
snps <- which( ( kegg9$snp.info[,2] == kegg9$gene.info[kegg9$gene.info[,1] == g, 2] ) &
(kegg9$snp.info[,3] > kegg9$gene.info[kegg9$gene.info[,1] == g, 3] ) &
(kegg9$snp.info[,3] < kegg9$gene.info[kegg9$gene.info[,1] == g, 4] ) )
## Take subsets
newP <- kegg9$nP[snps] ;
ldsub <- kegg9$ldmatrix[snps, snps];
## Get p-value for gene SOAT1. Read vignette for details.
out <- aSPUM(newP, corrSNP=ldsub , pow=c(1,2,4,8, Inf), n.perm=100, Ps=TRUE)
out$Ts
# This is a vector of Test Statistics for SPUM and aSPUM tests.
# SPU1 to SPUInf corresponds with the option pow=c(1:8, Inf)
# They are SPU test statistics.
# The last element aSPUM is minimum of them, aSPUM statistic.
out$pvs
# This is a vector of p-values for SPUM and aSPUM tests.
# SPUM1 to SPUMInf corresponds with the option pow=c(1:8, Inf)
# They are p-values for corresponding SPUM tests.
# The last element is p-value of aSPUM test.
Run the code above in your browser using DataLab