##The examples below are chosen to run relatively quickly (<5 mins)
##and do not represent recommended tuning choices.
## Not run:
# data(musigma2)
# library(ggplot2)
# ##Parameter inference example
# parameters <- data.frame(par.sim)
# sumstats <- data.frame(stat.sim)
# covdiag <- cov.pi(param=parameters, sumstat=sumstats, testsets=1:100,
# tol=seq(0.1,1,by=0.1), diagnostics=c("KS"))
#
# #Plot of diagnostic results
# qplot(x=tol, y=pvalue, facets=.~parameter, data=covdiag$diag)
# #Plot of raw results for tol=0.5
# qplot(x=mu, data=subset(covdiag$raw, tol==0.5))
# #Plot of raw results for tol=0.5
# qplot(x=sigma2, data=subset(covdiag$raw, tol==0.5))
#
# #Compute CGR statistic and plot
# cgrout <- covstats.pi(covdiag$raw, diagnostics="CGR")
# qplot(x=tol, y=pvalue, facets=.~parameter, data=cgrout)
#
# ##Model choice example, based on simple simulated data
# index <- sample(1:2, 1E4, replace=TRUE)
# sumstat <- ifelse(index==1, rnorm(1E4,0,1), rnorm(1E4,0,rexp(1E4,1)))
# sumstat <- data.frame(ss=sumstat)
# covdiag <- cov.mc(index=index, sumstat=sumstat, testsets=1:100,
# tol=seq(0.1,1,by=0.1), diagnostics=c("freq"))
# qplot(x=tol, y=pvalue, data=covdiag$diag)
# llout <- covstats.mc(covdiag$raw, index=index,
# diagnostics="loglik.binary")
# qplot(x=tol, y=pvalue, data=llout)
# mc.ci(covdiag$raw, tol=0.5, modname=1, modtrue=index[1:200])
# ## End(Not run)
Run the code above in your browser using DataLab