library(cluster)
library(agricolae)
# Example 1
data.1 <- rbind(c(1,1,1,1,1),c(1,1,0,1,1),c(0,0,1,0,0),c(1,0,1,0,1),
c(0,0,0,0,0),c(1,1,1,1,1))
dimnames(data.1)<-list(c("A","B","C","D","E","F"),c("m1","m2","m3","m4","m5"))
distance<-coeff.diana(data.1)
h<-hclust(distance,method="mcquitty")
#startgraph
plot(h)
#endgraph
# Example 2
data.2 <- rbind(c(1200,2,6,20),c(1500,1,3,10),c(1400,1,3,20),c(1600,2,5,15),
c(1000,1,2,5))
dimnames(data.2)<-list(c("A","B","C","D","E"),c("v1","v2","v3","v4"))
distance<-coeff.diana(data.2)
# Example 3
data.3 <-rbind(c(4,2,6,15),c(NA,1,3,18),c(2,1,NA,16),c(6,2,5,15),c(NA,1,2,NA),
c(4,2,6,10))
dimnames(data.3)<-list(c("+","+","+",".",".","."),c("x1","x2","x3","x4"))
distance<-coeff.diana(data.3)
Run the code above in your browser using DataLab