ProbeLevelModel: The ProbeLevelModel class
Description
Package: aroma.affymetrix
Class ProbeLevelModel
Object
~~|
~~+--
Model
~~~~~~~|
~~~~~~~+--
UnitModel
~~~~~~~~~~~~|
~~~~~~~~~~~~+--
MultiArrayUnitModel
~~~~~~~~~~~~~~~~~|
~~~~~~~~~~~~~~~~~+--
ProbeLevelModel
Directly known subclasses:
AffineCnPlm, AffinePlm, AffineSnpPlm, AvgCnPlm, AvgPlm, AvgSnpPlm, ExonRmaPlm, HetLogAddCnPlm, HetLogAddPlm, HetLogAddSnpPlm, MbeiCnPlm, MbeiPlm, MbeiSnpPlm, RmaCnPlm, RmaPlm, RmaSnpPlm
public static class ProbeLevelModel
extends MultiArrayUnitModel
This abstract class represents a probe-level model (PLM) as defined
by the affyPLM package:
"A [...] PLM is a model that is fit to probe-intensity data.
More specifically, it is where we fit a model with probe level
and chip level parameters on a probeset by probeset basis",
where the more general case for a probeset is a unit group
in Affymetrix CDF terms.Usage
ProbeLevelModel(..., standardize=TRUE)
Arguments
standardize
If TRUE
, chip-effect and probe-affinity estimates are
rescaled such that the product of the probe affinities is one. Fields and Methods
Methods:
rll{
calculateResidualSet
-
calculateWeights
-
fit
Estimates the model parameters.
getChipEffectSet
Gets the set of chip effects for this model.
getProbeAffinityFile
Gets the probe affinities for this model.
getResidualSet
-
getWeightsSet
-
}
Methods inherited from MultiArrayUnitModel:
getListOfPriors, setListOfPriors, validate
Methods inherited from UnitModel:
findUnitsTodo, getAsteriskTags, getFitSingleCellUnitFunction
Methods inherited from Model:
fit, getAlias, getAsteriskTags, getDataSet, getFullName, getName, getPath, getRootPath, getTags, setAlias, setTags
Methods inherited from Object:
asThis, getChecksum, $, $<-, [[, [[<-, as.character, attach, attachLocally, clearCache, clearLookupCache, clone, detach, equals, extend, finalize, gc, getEnvironment, getFieldModifier, getFieldModifiers, getFields, getInstantiationTime, getStaticInstance, hasField, hashCode, ll, load, objectSize, print, registerFinalizer, saveDetails
In order to minimize the risk for mistakes, but also to be able compare
results from different PLMs, all PLM subclasses must meet the following
criteria:
- All parameter estimates must be (stored and returned) on the
intensity scale, e.g. log-additive models such as
RmaPlm
have to transform the parameters on the log-scale to the intensity
scale. - The probe-affinity estimates$\phi_k$for a unit group
must be constrained such that$\prod_k \phi_k = 1$,
or equivalently if$\phi_k > 0$,$\sum_k \log(\phi_k) = 0$.
Note that the above probe-affinity constraint guarantees that the
estimated chip effects across models are on the same scale.See Also
For more details on probe-level models, please see
the affyPLM package.