Calculates a perpendicularity index,
prp(Time, S.X, S.Y, N.X, N.Y, habitat = NULL, near.angle = NULL,
F.0.NA = TRUE)
A numeric vector containing the times when spatial coordinates were recorded.
X-coordinates of animal.
Y-coordinates of animal.
X-coordinate of nearest point on boundary. These data can be obtained from function near.bound
or from ARCGIS Near output.
Y-coordinate of nearest point on boundary. These data can be obtained from function near.bound
or from ARCGIS Near output.
A character vector of habitat categories.
A numeric vector containing the angle of azimuth to the nearest point on the boundary with respect to a four quadrant system. NE = bound.angle
or from ARCGIS Near output.
A logical argument specifying whether or not a time interval in which F = 0 should be made NA
(see Figure from examples)
Returns a list with four or five items.
A matrix with n - 1 rows containing line lengths for the lines A, B, C, D, and F. See figure in examples below.
A matrix with n - 1 rows containing line lengths for the angles
This component provides a matrix with n - 1 rows. Included are the columns: End.time
, Eta.Index
, Delta
, Habitat
, and Brdr chng
. The columns Habitat
, and Brdr chng
are excluded if habitat = NULL
or near.angle = NULL
.
Contains averages and standard errors for
Crossing binomial summaries. Provided if habitat
and near.angle
are specified.
This index for perpendicularity,
if
For notation create Figures from examples.
Kie, J.G., A.A. Ager, and R.T. Bowyer (2005) Landscape-level movements of North American elk (Cervus elaphus): effects of habitat patch structure and topography. Landscape Ecology 20:289-300.
McGarigal K., SA Cushman, M.C. Neel, and E. Ene (2002) FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst.
# NOT RUN {
###Diagram describing prp output.
y<-rnorm(100,0,5)
plot(seq(1,100),sort(y),type="l",xaxt="n",yaxt="n",lwd=2,xlab="",ylab="")
op <- par(font=3)
segments(52,-12,46,sort(y)[46],lty=1,col=1,lwd=1)##A
segments(90,-8,85,sort(y)[85],lty=1,col=1,lwd=1)##B
segments(46,sort(y)[46],85,sort(y)[85],lty=1)##F
segments(90,-8,46,sort(y)[46],lty=2)##D
arrows(52,-12,90,-8,length=.1,lwd=3)##C
arrows(20,-12,20,8,lty=2,col="gray",length=.1)#North
arrows(20,sort(y)[46],95,sort(y)[46],length=.1,lty=2,col="gray")
arrows(20,-12,95,-12,length=.1,lty=2,col="gray")#East
text(20,9,"N",col="gray");text(97,-12, "E", col= "gray");text(97,sort(y)[46], "E",
col= "gray")
text(49.5,-12.5,"a");text(92.5,-8.5,"b")
text(45.5,-5.5,"A",font=4,col=1);text(70,-9,"C",font=4,col=1);text(91.5,-1.75,"B",
font=4,col=1)
text(44,sort(y)[46]+1,"c");text(67.5,-2.5,"D",font=4,col=1);text(65,3.9,"F",font=4,
col=1)
text(87,sort(y)[87]+1,"d");text(57,-10,expression(kappa),col=1);
text(81,sort(y)[87]-3,expression(gamma),col=1);text(57,1.3,expression(theta),col=1)
text(64,-11.5,expression(beta),col=1)
library(plotrix)
draw.arc(50,-12,6,1.35,col=1);draw.arc(50,-12,6,.3,col=1);draw.arc(50,-12,6,0.02,
col=1)
draw.arc(46,sort(y)[46],7,.01,col=1);draw.arc(46,sort(y)[46],7,.5,col="white")
draw.arc(85,sort(y)[85],6,-2.7,col=1);draw.arc(85,sort(y)[85],6,-1.4,col="white",
lwd=2)
legend("topleft",c(expression(paste(kappa, " = acos[(",C^2," + ",X^2," - ",D^2,")
/2CX]")),
expression(paste(gamma," = acos[(",Y^2," + ",F^2," - ",D^2,")/2YF]")),
expression(paste(theta," = atan[(",y[f]," - ",y[n],")/(",x[f]," - ",x[n],")]")),
expression(paste(beta, " = atan[(",y[epsilon]," - ",y[alpha],")/(",x[epsilon],
" - ",x[alpha],")]"))),
bty="n",cex=.9,inset=-.025)
###Figure for demo dataset.
bX<-seq(0,49)/46
bY<-c(4.89000,4.88200,4.87400,4.87300,4.88000,4.87900,4.87900,4.90100,4.90800,
4.91000,4.93300,4.94000,4.91100,4.90000,4.91700,4.93000,4.93500,4.93700,
4.93300,4.94500,4.95900,4.95400,4.95100,4.95800,4.95810,4.95811,4.95810,
4.96100,4.96200,4.96300,4.96500,4.96500,4.96600,4.96700,4.96540,4.96400,
4.97600,4.97900,4.98000,4.98000,4.98100,4.97900,4.98000,4.97800,4.97600,
4.97700,4.97400,4.97300,4.97100,4.97000)
X<-c(0.004166667,0.108333333,0.316666667,0.525000000,0.483333333,0.608333333,
0.662500000,0.683333333,0.900000000,1.070833333)
Y<-c(4.67,4.25,4.26,4.50,4.90,4.10,4.70,4.40,4.20,4.30)
plot(bX,bY,type="l",lwd=2,xlab="",ylab="",ylim=c(4,5.1))
lines(X,Y)
for(i in 1:9)arrows(X[i],Y[i],X[i+1],Y[i+1],length=.1,lwd=1,angle=20)
mx<-rep(1,9)
my<-rep(1,9)
for(i in 1:9)mx[i]<-mean(c(X[i],X[i+1]))
for(i in 1:9)my[i]<-mean(c(Y[i],Y[i+1]))
for(i in 1:9)text(mx[i],my[i],i,font=2,cex=1.3)
nn<-near.bound(X,Y,bX,bY)
prp(seq(1,10),X,Y,nn[,1],nn[,2])$moment.by.moment
par(op)
# }
Run the code above in your browser using DataLab