Learn R Programming

⚠️There's a newer version (1.3.4.1) of this package.Take me there.

bartMachine (version 1.2.3)

Bayesian Additive Regression Trees

Description

An advanced implementation of Bayesian Additive Regression Trees with expanded features for data analysis and visualization.

Copy Link

Version

Install

install.packages('bartMachine')

Monthly Downloads

1,876

Version

1.2.3

License

GPL-3

Maintainer

Adam Kapelner

Last Published

May 12th, 2016

Functions in bartMachine (1.2.3)

bartMachineCV

Build BART-CV
bart_predict_for_test_data

Predict for Test Data with Known Outcomes
benchmark_datasets

benchmark_datasets
dummify_data

Dummify Design Matrix
calc_prediction_intervals

Calculate Prediction Intervals
automobile

Data concerning automobile prices.
var_selection_by_permute

Perform Variable Selection using Three Threshold-based Procedures
plot_convergence_diagnostics

Plot Convergence Diagnostics
calc_credible_intervals

Calculate Credible Intervals
set_bart_machine_num_cores

Set the Number of Cores for BART
var_selection_by_permute_cv

Perform Variable Selection Using Cross-validation Procedure
predict_bartMachineArr

Make a prediction on data using a BART array object
pd_plot

Partial Dependence Plot
predict.bartMachine

Make a prediction on data using a BART object
get_var_counts_over_chain

Get the Variable Inclusion Counts
get_sigsqs

Get Posterior Error Variance Estimates
summary.bartMachine

Summarizes information about a bartMachine object.
bartMachineArr

Create an array of BART models for the same data.
interaction_investigator

Explore Pairwise Interactions in BART Model
investigate_var_importance

Explore Variable Inclusion Proportions in BART Model
k_fold_cv

Estimate Out-of-sample Error with K-fold Cross validation
linearity_test

Test of Linearity
bart_machine_num_cores

Get Number of Cores Used by BART
plot_y_vs_yhat

Plot the fitted Versus Actual Response
destroy_bart_machine

Destroy BART Model (deprecated --- do not use!)
check_bart_error_assumptions

Check BART Error Assumptions
print.bartMachine

Summarizes information about a bartMachine object.
cov_importance_test

Importance Test for Covariate(s) of Interest
rmse_by_num_trees

Assess the Out-of-sample RMSE by Number of Trees
bart_machine_get_posterior

Get Full Posterior Distribution
get_var_props_over_chain

Get the Variable Inclusion Proportions
bartMachine

Build a BART Model