data(summarytab)
data(aaseqtab)
data(aaseqtab2)
data(mutationtab)
data(clones.ind)
data(clones.allind)
data(vgenes)
## Combine IMGT/HighV-QUEST folders and read data
combineIMGT(folders = c("pathTo/IMGT1a", "pathTo/IMGT1b", "pathTo/IMGT1c"),
name = "NewProject)
tab<-readIMGT("PathTo/file.txt",filterNoResults=TRUE)
## Get information about functionality and filter for functional sequences
functionality<-sequences.functionality(data = summarytab$Functionality)
ProductiveSequences<-sequences.getProductives(summarytab)
## Gene usage
Vsubgroup.usage<-geneUsage(genes = clones.ind$V_gene,
functionality = clones.ind$Functionality_all_sequences, level = "subgroup",
abundance="relative")
Vgenes.comp<-compare.geneUsage(gene.list = list(aaseqtab$V_GENE_and_allele,
aaseqtab2$V_GENE_and_allele), level = "subgroup", abundance = "relative",
names = c("IndA", "IndB"), nrCores = 1)
plotCompareGeneUsage(comp.tab = Vgenes.comp, color = c("gray97", "darkblue"),
PDF = "Example")
## Gene/gene combinations
VDcomb.tab<-sequences.geneComb(family1 = summarytab$V_GENE_and_allele,
family2 = summarytab$D_GENE_and_allele, level = "subgroup",
abundance = "relative")
plotGeneComb(geneComb.tab=VDcomb.tab, color="red", withNA=FALSE,PDF="test")
## Mutation analysis
mutation.V<-sequences.mutation(mutationtab = mutationtab, summarytab = summarytab,
sequence = "V")
mutation.CDR1<-sequences.mutation(mutationtab = mutationtab, sequence = "CDR1",
functionality = TRUE, junctionFr = TRUE)
## Defining, Filtering and Plotting Clone features
clones.tab<-clones(aaseqtab=aaseqtab,summarytab=summarytab, identity=0.85, useJ=TRUE,
dispCDR3aa=TRUE, dispFunctionality.ratio=TRUE, dispFunctionality.list=TRUE)
plotClonesCDR3Length(CDR3Length = clones.ind$CDR3_length_AA,
functionality = clones.ind$Functionality_all_sequences,
color="gray",abundance="relative", PDF="test")
clones.func<-clones.filterFunctionality(clones.tab = clones.ind,
filter = "productive")
## Find shared clones between individuals
sharedclones<-clones.shared(clones.tab = clones.allind, identity = 0.85, useJ = TRUE,
dispD = TRUE, dispCDR3aa = TRUE)
sharedclones.summary<-clones.shared.summary(shared.tab = sharedclones)
## True diversity
trueDiv<-trueDiversity(sequences = aaseqtab$CDR3_IMGT, order = 1)
plotTrueDiversity(trueDiversity.tab=trueDiv,color="red",PDF="test")
trueDiv.comp<-compare.trueDversity(sequence.list = list(aaseqtab$CDR3_IMGT,
aaseqtab2$CDR3_IMGT), names = c("IndA", "IndB"), order = 1, nrCores = 1)
plotCompareTrueDiversity(comp.tab = trueDiv.comp, PDF = "Example")
## Gini index
gini<-gini<-clones.giniIndex(clone.size=clones.ind$total_number_of_sequences)
## Dissmilarity/distance indices of gene usage and sequence data
distGeneUsage<-geneUsage.distance(geneUsage.tab = Vgenes, method = "bc")
distSequence<-sequences.distance(sequences = clones.ind$unique_CDR3_sequences_AA,
method = "levenshtein", divLength=TRUE)
## Principal coordinate analysis of distance matrices + visualization
distpcoa<-dist.PCoA(dist.tab = distGeneUsage, correction = "none")
# 'groups' data.frame for plot function: in the case, there are no groups:
groups.vec<-unlist(apply(data.frame(clones.ind$unique_CDR3_sequences_AA),1,
function(x){strsplit(x,split=", ")[[1]]}))
groups.vec<-cbind(groups.vec, 1)
plotDistPCoA(pcoa.tab = distpcoa, groups=groups.vec, axes = c(1,2),
plotCorrection = FALSE, title = NULL, plotLegend=TRUE, PDF = "TEST")Run the code above in your browser using DataLab