## Not run:
# data(summarytab)
# data(aaseqtab)
# data(aaseqtab2)
# data(mutationtab)
# data(clones.ind)
# data(clones.allind)
# data(vgenes)
#
# ## Combine IMGT/HighV-QUEST folders and read data
# combineIMGT(folders = c("pathTo/IMGT1a", "pathTo/IMGT1b", "pathTo/IMGT1c"),
# name = "NewProject)
# tab<-readIMGT("PathTo/file.txt",filterNoResults=TRUE)
#
#
# ## Get information about functionality and filter for functional sequences
# functionality<-sequences.functionality(data = summarytab$Functionality)
# ProductiveSequences<-sequences.getProductives(summarytab)
#
# ## Gene usage
# Vsubgroup.usage<-geneUsage(genes = clones.ind$V_gene,
# functionality = clones.ind$Functionality_all_sequences, level = "subgroup",
# abundance="relative")
#
# Vgenes.comp<-compare.geneUsage(gene.list = list(aaseqtab$V_GENE_and_allele,
# aaseqtab2$V_GENE_and_allele), level = "subgroup", abundance = "relative",
# names = c("IndA", "IndB"), nrCores = 1)
# plotCompareGeneUsage(comp.tab = Vgenes.comp, color = c("gray97", "darkblue"),
# PDF = "Example")
#
#
# ## Gene/gene combinations
# VDcomb.tab<-sequences.geneComb(family1 = summarytab$V_GENE_and_allele,
# family2 = summarytab$D_GENE_and_allele, level = "subgroup",
# abundance = "relative")
# plotGeneComb(geneComb.tab=VDcomb.tab, color="red", withNA=FALSE,PDF="test")
#
#
# ## Mutation analysis
# mutation.V<-sequences.mutation(mutationtab = mutationtab, summarytab = summarytab,
# sequence = "V")
# mutation.CDR1<-sequences.mutation(mutationtab = mutationtab, sequence = "CDR1",
# functionality = TRUE, junctionFr = TRUE)
#
# ## Defining, Filtering and Plotting Clone features
# clones.tab<-clones(aaseqtab=aaseqtab,summarytab=summarytab, identity=0.85, useJ=TRUE,
# dispCDR3aa=TRUE, dispFunctionality.ratio=TRUE, dispFunctionality.list=TRUE)
# plotClonesCDR3Length(CDR3Length = clones.ind$CDR3_length_AA,
# functionality = clones.ind$Functionality_all_sequences,
# color="gray",abundance="relative", PDF="test")
# clones.func<-clones.filterFunctionality(clones.tab = clones.ind,
# filter = "productive")
#
# ## Find shared clones between individuals
# sharedclones<-clones.shared(clones.tab = clones.allind, identity = 0.85, useJ = TRUE,
# dispD = TRUE, dispCDR3aa = TRUE)
# sharedclones.summary<-clones.shared.summary(shared.tab = sharedclones)
#
# ## True diversity
# trueDiv<-trueDiversity(sequences = aaseqtab$CDR3_IMGT, order = 1)
# plotTrueDiversity(trueDiversity.tab=trueDiv,color="red",PDF="test")
#
# trueDiv.comp<-compare.trueDversity(sequence.list = list(aaseqtab$CDR3_IMGT,
# aaseqtab2$CDR3_IMGT), names = c("IndA", "IndB"), order = 1, nrCores = 1)
# plotCompareTrueDiversity(comp.tab = trueDiv.comp, PDF = "Example")
#
#
# ## Gini index
# gini<-gini<-clones.giniIndex(clone.size=clones.ind$total_number_of_sequences)
#
# ## Dissmilarity/distance indices of gene usage and sequence data
#
# distGeneUsage<-geneUsage.distance(geneUsage.tab = Vgenes, method = "bc")
# distSequence<-sequences.distance(sequences = clones.ind$unique_CDR3_sequences_AA,
# method = "levenshtein", divLength=TRUE)
#
# ## Principal coordinate analysis of distance matrices + visualization
# distpcoa<-dist.PCoA(dist.tab = distGeneUsage, correction = "none")
# # 'groups' data.frame for plot function: in the case, there are no groups:
# groups.vec<-unlist(apply(data.frame(clones.ind$unique_CDR3_sequences_AA),1,
# function(x){strsplit(x,split=", ")[[1]]}))
# groups.vec<-cbind(groups.vec, 1)
# plotDistPCoA(pcoa.tab = distpcoa, groups=groups.vec, axes = c(1,2),
# plotCorrection = FALSE, title = NULL, plotLegend=TRUE, PDF = "TEST")
#
# ## End(Not run)
Run the code above in your browser using DataLab