Learn R Programming

bcrm

Implements a wide variety of one and two-parameter Bayesian CRM designs. The program can run interactively, allowing the user to enter outcomes after each cohort has been recruited, or via simulation to assess operating characteristics.

Installation

You can install from CRAN with:

install.packages("bcrm")

Or try the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("mikesweeting/bcrm")

Example

library(bcrm)

## Dose-escalation cancer trial example as described in Neuenschwander et al 2008.
## Pre-defined doses
dose<-c(1,2.5,5,10,15,20,25,30,40,50,75,100,150,200,250)
## Pre-specified probabilities of toxicity
## [dose levels 11-15 not specified in the paper, and are for illustration only]
p.tox0<-c(0.010,0.015,0.020,0.025,0.030,0.040,0.050,0.100,0.170,0.300,0.400,0.500,0.650
  ,0.800,0.900)
## Data from the first 5 cohorts of 18 patients
data<-data.frame(patient=1:18,dose=rep(c(1:4,7),c(3,4,5,4,2)),tox=rep(0:1,c(16,2)))
## Target toxicity level
target.tox<-0.30
## Random seed set to 12345 for this example
seed<-12345

## Simulate 10 replicate trials of size 36 (cohort size 3) using this design 
## with constraint (i.e. no dose-skipping) and starting at lowest dose
## True probabilities of toxicity are set to pre-specified probabilities (p.tox0) 
Power.LN.bcrm.sim<-bcrm(stop=list(nmax=36),p.tox0=p.tox0,dose=dose,ff="power"
  ,prior.alpha=list(3,0,1.34^2),target.tox=target.tox,constrain=TRUE
  ,sdose.calculate="median",pointest="mean",start=1,simulate=TRUE,nsims=10,truep=p.tox0, seed=seed)
#> Simulated trial: 10
print(Power.LN.bcrm.sim)
#> Operating characteristics based on  10  simulations: 
#>  
#>               
#> Sample size 36
#> 
#>                             Doses
#>                              No dose      1    2.5      5     10     15
#>   Experimentation proportion      NA 0.0833 0.0833 0.0833 0.0833 0.0833
#>   Recommendation proportion        0 0.0000 0.0000 0.0000 0.0000 0.0000
#>                             Doses
#>                                  20     25     30    40    50     75
#>   Experimentation proportion 0.0833 0.0833 0.0833 0.167 0.117 0.0417
#>   Recommendation proportion  0.0000 0.0000 0.0000 0.200 0.600 0.2000
#>                             Doses
#>                                  100 150 200 250
#>   Experimentation proportion 0.00833   0   0   0
#>   Recommendation proportion  0.00000   0   0   0
#> 
#>                             Probability of DLT
#>                              [0,0.2] (0.2,0.4] (0.4,0.6] (0.6,0.8] (0.8,1]
#>   Experimentation proportion   0.833     0.158   0.00833         0       0
#>   Recommendation proportion    0.200     0.800   0.00000         0       0

Copy Link

Version

Install

install.packages('bcrm')

Monthly Downloads

372

Version

0.5.4

License

GPL (>= 2)

Issues

Pull Requests

Stars

Forks

Maintainer

Graham Wheeler

Last Published

August 23rd, 2019

Functions in bcrm (0.5.4)

plot.bcrm

Plot the estimated dose-toxicity curve
print.bcrm

Print information regarding a trial conducted using the Bayesian continuous reassessment method
print.threep3

Print information regarding the operating characteristics of a standard 3+3 design
find.x

Obtain samples from the maximum tolerated dose (MTD) distribution.
bcrm

Bayesian Continual Reassessment Method for Phase I Dose-Escalation Trials
bcrm-package

Bayesian Continual Reassessment Method for Phase I Dose-Escalation Trials
plot.threep3

Plot the operating characteristics from a standard 3+3 trial
plot.bcrm.sim

Plot the operating characteristics from the simulated trials
Posterior.rjags

Returns samples from the posterior distributions of each model parameter using JAGS.
Posterior.exact

Returns posterior mean parameter value and summaries of distributions for probability of DLT at each dose level
Posterior.BRugs

Returns samples from the posterior distributions of each model parameter using OpenBUGS.
threep3

Calculate all possible trial pathways for the standard 3+3 design, together with their probability of occurring
Posterior.R2WinBUGS

Returns samples from the posterior distributions of each model parameter using WinBUGS
Posterior.exact.sim

Returns posterior mean parameter value and summaries of distributions for probability of DLT at each dose level
getprior

Samples from the specified prior distribution.