# NOT RUN {
## Dose-escalation cancer trial example as described in Neuenschwander et al 2008.
## Pre-defined doses
dose <- c(1, 2.5, 5, 10, 15, 20, 25, 30, 40, 50, 75, 100, 150, 200, 250)
## Pre-specified probabilities of toxicity
## [dose levels 11-15 not specified in the paper, and are for illustration only]
p.tox0 <- c(0.010, 0.015, 0.020, 0.025, 0.030, 0.040, 0.050,
0.100, 0.170, 0.300, 0.400, 0.500, 0.650, 0.800, 0.900)
## Data from the first 5 cohorts of 18 patients
tox <- c(0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0)
notox <- c(3, 4, 5, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
## Target toxicity level
target.tox <- 0.30
## Prior distribution for the MTD given a lognormal(0, 1.34^2) distribution for alpha
## and a power model functional form
prior.alpha <- list(3, 0, 1.34^2)
ff <- "power"
samples.alpha <- getprior(prior.alpha, 2000)
mtd <- find.x(ff, target.tox, alpha=samples.alpha)
hist(mtd)
## Standardised doses
sdose <- find.x(ff, p.tox0, alpha=1)
## Posterior distribution of the MTD (on standardised dose scale) using data
## from the cancer trial described in Neuenschwander et al 2008.
## Using R2WinBUGS
# }
# NOT RUN {
posterior.samples <- Posterior.R2WinBUGS(tox, notox, sdose, ff, prior.alpha
, burnin.itr=2000, production.itr=2000, bugs.directory = "C:/Program Files/WinBUGS14/")
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab