#Read files into BeadSetIllumina-object
rPath <- system.file("extdata", package="beadarrayMSV")
BSDataRaw <- readBeadSummaryOutput(path=rPath,recursive=TRUE)
#Find indexes to sub-bead pools
beadInfo <- read.table(paste(rPath,'beadData.txt',sep='/'),sep='\t',
header=TRUE,as.is=TRUE)
rownames(beadInfo) <- make.names(beadInfo$Name)
normInd <- getNormInd(beadInfo,featureNames(BSDataRaw))
#Pre-process 1 array
normOpts <- setNormOptions(minSize=10)
BSData <- shearRawSignal(BSDataRaw, normOpts = normOpts)
noiseDist <- getNoiseDistributions(BSData, normInd = normInd,
normOpts = normOpts)
trChannel <- transformChannels(assayData(BSData)$R,
assayData(BSData)$G, normOpts = normOpts)
mafData <- normalizeShearedChannels(trChannel, noiseDist,
normOpts = normOpts)
quantData <- normalizeShearedChannels(trChannel, noiseDist,
normOpts = setNormOptions(method='quantNorm'))
#Plot distributions
dev.new()
par(mfrow=c(3,2))
hist(trChannel$X,breaks=30,col='red',main='Red channel')
hist(trChannel$Y,breaks=30,col='green',main='Green channel')
hist(mafData$X,breaks=30,col='red',main='medianAF')
hist(mafData$Y,breaks=30,col='green',main='medianAF')
hist(quantData$X,breaks=30,col='red',main='quantNorm')
hist(quantData$Y,breaks=30,col='green',main='quantNorm')
Run the code above in your browser using DataLab