Learn R Programming

bikm1 (version 1.1.0)

plot,BIKM1_LBM_Binary-method: Plot method for a '>BIKM1_LBM_Binary object

Description

Produce respectively one plot of two-dimensional segmentation of a BIKM1_LBM_Binary fit, a plot of evolution of the chosen criterion as a function of the number of row and column clusters, and a boxplot of conditional posteriors for each row and column cluster.

Usage

# S4 method for BIKM1_LBM_Binary
plot(x, y, ...)

Arguments

x

an object of class BIKM1_LBM_Binary.

y

binary matrix of observations.

...

in the plot method, additional parameters (ignored)

Value

One plot (initial and estimated partitions) and three ggplot2 objects (conditional posterior in each cluster for each matrix and the graph of chosen criterion values.

Examples

Run this code
# NOT RUN {
require(bikm1)
g=5
h=3
theta=list()
theta$pi_g=t(1/g*rep(1,g))
theta$rho_h=t(1/h*rep(1,h))
eps=0.1
theta$alpha_gh=matrix(c(1-eps,eps,eps,eps,1-eps,eps,eps,1-eps,1-eps,
1-eps,1-eps,eps,eps,eps,eps),ncol=h,byrow=TRUE)
n=250
J=150
data=BinBlocRnd_LBM(n,J,theta)
BinBlocVisu_LBM(data$x, data$xrow,data$xcol)
res=BIKM1_LBM_Binary(data$x,8,5,4,init_choice='smallVBayes')
BinBlocVisu_LBM(data$x,res@model_max$z,res@model_max$v)
e=CARI(data$xrow,data$xcol,res@model_max$z,res@model_max$v)
plot(res,data)
# }

Run the code above in your browser using DataLab