Learn R Programming

⚠️There's a newer version (1.1.1) of this package.Take me there.

bliss

Bayesian functional Linear regression with Sparse Step functions (BLiSS)

A method for the Bayesian Functional Linear Regression model (functions-on-scalar), including two estimators of the coefficient function and an estimator of its support. A representation of the posterior distribution is also available.

https://pmgrollemund.github.io/bliss/

Installation

To install the bliss package, the easiest is to install it directly from GitHub. Open an R session and run the following commands:

library(remotes) 
install_github("pmgrollemund/bliss", build_vignettes=TRUE)

Usage

Once the package is installed on your computer, it can be loaded into a R session:

library(bliss)
help(package="bliss")

Citation

As a lot of time and effort were spent in creating the bliss method, please cite it when using it for data analysis:

Grollemund, Paul-Marie; Abraham, Christophe; Baragatti, Meïli; Pudlo, Pierre. Bayesian Functional Linear Regression with Sparse Step Functions. Bayesian Anal. 14 (2019), no. 1, 111--135. doi:10.1214/18-BA1095. https://projecteuclid.org/euclid.ba/1524103229

You should also cite the bliss package:

citation("bliss")

See also citation() for citing R itself.

Copy Link

Version

Install

install.packages('bliss')

Monthly Downloads

303

Version

1.0.5

License

GPL-3

Issues

Pull Requests

Stars

Forks

Maintainer

Paul-Marie Grollemund

Last Published

April 18th, 2024

Functions in bliss (1.0.5)

fit_Bliss

fit_Bliss
param1

A list of param for bliss model
sigmoid

sigmoid
printbliss

Print a bliss Object
sim

sim
lines_bliss

lines_bliss
sim_x

sim_x
interpretation_plot

interpretation_plot
%between%

between
plot_bliss

plot_bliss
pdexp

pdexp
prior_Bliss

fit_Bliss
support_estimation

support_estimation
res_bliss1

A result of the BliSS method
sigmoid_sharp

sigmoid_sharp
change_grid

change_grid
compute_beta_posterior_density

compute_beta_posterior_density
bliss

bliss: Bayesian functional Linear regression with Sparse Step functions
build_Fourier_basis

build_Fourier_basis
compute_beta_sample

compute_beta_sample
BIC_model_choice

BIC_model_choice
compute_chains_info

compute_chains_info
Bliss_Gibbs_Sampler

Bliss_Gibbs_Sampler
choose_beta

choose_beta
Bliss_Simulated_Annealing

Bliss_Simulated_Annealing
compute_random_walk

compute_random_walk
dposterior

dposterior
integrate_trapeze

integrate_trapeze
determine_intervals

determine_intervals
corr_matrix

corr_matrix
image_Bliss

image_Bliss
compute_starting_point_sann

compute_starting_point_sann
data1

a list of data