Learn R Programming

bplsr

The bplsr package implements the Bayesian partial least squares regression model. It is a Bayesian factor model which emulates the partial least squares (PLS) method. See Urbas et al. (2024) for details.

Installation

Installing from CRAN:

install.packages('bplsr')

Installing directly from GitHub:

# install.packages("devtools")
devtools::install_github("SzymonUrbas/bplsr")

Example

The following example illustrates how to carry out multivariate regression using BPLS on mid-infrared spectral data of milk samples:

library(bplsr)


X = milk_MIR$xMIR
Y = milk_MIR$yTraits[, c('Casein_content','Fat_content')]

set.seed(1)
# fit model to 75% of data and predict on remaining 25%
idx = sample(seq(nrow(X)),floor(nrow(X)*0.75),replace = FALSE)

Xtrain = X[idx,];Ytrain = Y[idx,]
Xtest = X[-idx,];Ytest = Y[-idx,]

# fit the model (MCMC takes time)
bplsr_Fit = bplsr(Xtrain,Ytrain)

# generate predictions
bplsr_pred = bplsr.predict(model = bplsr_Fit, newdata = Xtest)

# point predictions
head(bplsr_pred$Ytest)
#>    Casein_content Fat_content
#> 5        3.142232    3.908393
#> 6        2.557213    4.109032
#> 7        2.739213    4.959536
#> 8        2.949198    5.058209
#> 9        2.773001    4.276898
#> 10       2.703331    4.500888

# lower and upper limits of prediction interval
head(bplsr_pred$Ytest_PI)
#> , , 2.5%
#> 
#>      Casein_content Fat_content
#> [1,]       2.870193    4.541164
#> [2,]       2.290815    4.750810
#> [3,]       2.475776    5.609996
#> [4,]       2.682534    5.701886
#> [5,]       2.501107    4.913358
#> [6,]       2.433394    5.143978
#> 
#> , , 97.5%
#> 
#>      Casein_content Fat_content
#> [1,]       2.870193    4.541164
#> [2,]       2.290815    4.750810
#> [3,]       2.475776    5.609996
#> [4,]       2.682534    5.701886
#> [5,]       2.501107    4.913358
#> [6,]       2.433394    5.143978

# plot of predictive posterior distribution for single test sample
hist(bplsr_pred$Ytest_dist[1,'Casein_content',], freq = F,
     main = 'Posterior predictive distribution', xlab = 'Casein_content')

References

Urbas, S., Lovera, P., Daly, R., O’Riordan, A., Berry, D., and Gormley, I. C. (2024). “Predicting milk traits from spectral data using Bayesian probabilistic partial least squares regression.” The Annals of Applied Statistics, 18(4): 3486-3506 doi:10.1214/24-AOAS1947

Copy Link

Version

Install

install.packages('bplsr')

Monthly Downloads

164

Version

1.0.4

License

GPL (>= 3)

Maintainer

Szymon Urbas

Last Published

July 10th, 2025

Functions in bplsr (1.0.4)

milk_MIR

Milk traits and corresponding mid-infrared spectra
bplsr.predict

Predict from a fitted BPLS regression model
bplsr

Run the BPLS regression model
bplsr-package

bplsr: Bayesian partial least squares regression