# \donttest{
# data(milk_MIR)
X = milk_MIR$xMIR
Y = milk_MIR$yTraits[, c('Casein_content','Fat_content')]
set.seed(1)
# fit model to 25% of data and predict on remaining 75%
idx = sample(seq(nrow(X)),floor(nrow(X)*0.25),replace = FALSE)
Xtrain = X[idx,];Ytrain = Y[idx,]
Xtest = X[-idx,];Ytest = Y[-idx,]
# fit the model (for default MCMC settings leave Qs and N_MCMC blank; can take longer)
bplsr_Fit = bplsr(Xtrain,Ytrain, Qs = 10, N_MCMC = 5000)
# generate predictions
bplsr_pred = bplsr.predict(model = bplsr_Fit, newdata = Xtest)
# point predictions
head(bplsr_pred$Ytest)
# lower and upper limits of prediction interval
head(bplsr_pred$Ytest_PI)
# plot of predictive posterior distribution for single test sample
hist(bplsr_pred$Ytest_dist[1,'Casein_content',], freq = FALSE,
main = 'Posterior predictive density', xlab = 'Casein_content')# }
Run the code above in your browser using DataLab