powered by
Performs bootstrapping to get group standard error estimates of a global graph measure (e.g. modularity).
Print a summary from a bootstrap analysis
brainGraph_boot(densities, resids, R = 1000, measure = c("mod", "E.global", "Cp", "Lp", "assortativity", "strength", "mod.wt", "E.global.wt"), conf = 0.95, .progress = TRUE)# S3 method for brainGraph_boot summary(object, ...)
# S3 method for brainGraph_boot summary(object, ...)
Numeric vector of graph densities to loop through
An object of class brainGraph_resids (the output from get.resid)
brainGraph_resids
get.resid
Integer; the number of bootstrap replicates (default: 1e3)
1e3
Character string of the measure to test (default: mod)
mod
Numeric; the confidence level for calculating confidence intervals (default: 0.95)
Logical indicating whether or not to show a progress bar (default: TRUE)
TRUE
A brainGraph_boot object (from brainGraph_boot)
brainGraph_boot
Unused
An object of class brainGraph_boot containing some input variables, in addition to a list of boot objects (one for each group).
boot
The confidence intervals are calculated using the normal approximation and at the 95% level.
Other Group analysis functions: IndividualContributions, NBS, brainGraph_GLM, brainGraph_mediate, brainGraph_permute, mtpc
IndividualContributions
NBS
brainGraph_GLM
brainGraph_mediate
brainGraph_permute
mtpc
Other Structural covariance network functions: IndividualContributions, brainGraph_init, brainGraph_permute, corr.matrix, get.resid, plot.brainGraph_resids, plot_volumetric
brainGraph_init
corr.matrix
plot.brainGraph_resids
plot_volumetric
# NOT RUN { boot.E.global <- brainGraph_boot(densities, resids.all, 1e3, 'E.global') # }
Run the code above in your browser using DataLab