Learn R Programming

bruceR (version 0.8.8)

CFA: Confirmatory Factor Analysis (CFA).

Description

An extension of lavaan::cfa().

Usage

CFA(
  data,
  model = "A =~ a[1:5]; B =~ b[c(1,3,5)]; C =~ c1 + c2 + c3",
  estimator = "ML",
  highorder = "",
  orthogonal = FALSE,
  missing = "listwise",
  digits = 3,
  nsmall = digits,
  file = NULL
)

Value

A list of results returned by lavaan::cfa().

Arguments

data

Data frame.

model

Model formula. See examples.

estimator

The estimator to be used (for details, see lavaan options). Default is "ML". Can be one of the following:

"ML"

Maximum Likelihood (can be extended to "MLM", "MLMV", "MLMVS", "MLF", or "MLR" for robust standard errors and robust test statistics)

"GLS"

Generalized Least Squares

"WLS"

Weighted Least Squares

"ULS"

Unweighted Least Squares

"DWLS"

Diagonally Weighted Least Squares

"DLS"

Distributionally-weighted Least Squares

highorder

High-order factor. Default is "".

orthogonal

Default is FALSE. If TRUE, all covariances among latent variables are set to zero.

missing

Default is "listwise". Alternative is "fiml" ("Full Information Maximum Likelihood").

digits, nsmall

Number of decimal places of output. Default is 3.

file

File name of MS Word (.doc).

See Also

Alpha, EFA, lavaan_summary

Examples

Run this code
data.cfa=lavaan::HolzingerSwineford1939
CFA(data.cfa, "Visual =~ x[1:3]; Textual =~ x[c(4,5,6)]; Speed =~ x7 + x8 + x9")
CFA(data.cfa, model="
    Visual =~ x[1:3]
    Textual =~ x[c(4,5,6)]
    Speed =~ x7 + x8 + x9
    ", highorder="Ability")

data.bfi = na.omit(psych::bfi)
CFA(data.bfi, "E =~ E[1:5]; A =~ A[1:5]; C =~ C[1:5]; N =~ N[1:5]; O =~ O[1:5]")

Run the code above in your browser using DataLab