Learn R Programming

bruceR (version 0.8.8)

lavaan_summary: Tidy report of lavaan model.

Description

Tidy report of lavaan model.

Usage

lavaan_summary(
  lavaan,
  ci = c("raw", "boot", "bc.boot", "bca.boot"),
  nsim = 100,
  seed = NULL,
  digits = 3,
  nsmall = digits,
  print = TRUE,
  covariance = FALSE,
  file = NULL
)

Value

Invisibly return a list of results:

fit

Model fit indices.

measure

Latent variable measures.

regression

Regression paths.

covariance

Variances and/or covariances.

effect

Defined effect estimates.

Arguments

lavaan

Model object fitted by lavaan.

ci

Method for estimating standard error (SE) and 95% confidence interval (CI).

Default is "raw" (the standard approach of lavaan). Other options:

"boot"

Percentile Bootstrap

"bc.boot"

Bias-Corrected Percentile Bootstrap

"bca.boot"

Bias-Corrected and Accelerated (BCa) Percentile Bootstrap

nsim

Number of simulation samples (bootstrap resampling) for estimating SE and 95% CI. In formal analyses, nsim=1000 (or larger) is strongly suggested.

seed

Random seed for obtaining reproducible results. Default is NULL.

digits, nsmall

Number of decimal places of output. Default is 3.

print

Print results. Default is TRUE.

covariance

Print (co)variances. Default is FALSE.

file

File name of MS Word (.doc).

See Also

PROCESS, CFA

Examples

Run this code
## Simple Mediation:
## Solar.R (X) => Ozone (M) => Temp (Y)

# PROCESS(airquality, y="Temp", x="Solar.R",
#         meds="Ozone", ci="boot", nsim=1000, seed=1)

model = "
Ozone ~ a*Solar.R
Temp ~ c.*Solar.R + b*Ozone
Indirect := a*b
Direct := c.
Total := c. + a*b
"
lv = lavaan::sem(model=model, data=airquality)
lavaan::summary(lv, fit.measure=TRUE, ci=TRUE, nd=3)  # raw output
lavaan_summary(lv)
# lavaan_summary(lv, ci="boot", nsim=1000, seed=1)


## Serial Multiple Mediation:
## Solar.R (X) => Ozone (M1) => Wind(M2) => Temp (Y)

# PROCESS(airquality, y="Temp", x="Solar.R",
#         meds=c("Ozone", "Wind"),
#         med.type="serial", ci="boot", nsim=1000, seed=1)

model0 = "
Ozone ~ a1*Solar.R
Wind ~ a2*Solar.R + d12*Ozone
Temp ~ c.*Solar.R + b1*Ozone + b2*Wind
Indirect_All := a1*b1 + a2*b2 + a1*d12*b2
Ind_X_M1_Y := a1*b1
Ind_X_M2_Y := a2*b2
Ind_X_M1_M2_Y := a1*d12*b2
Direct := c.
Total := c. + a1*b1 + a2*b2 + a1*d12*b2
"
lv0 = lavaan::sem(model=model0, data=airquality)
lavaan::summary(lv0, fit.measure=TRUE, ci=TRUE, nd=3)  # raw output
lavaan_summary(lv0)
# lavaan_summary(lv0, ci="boot", nsim=1000, seed=1)

model1 = "
Ozone ~ a1*Solar.R
Wind ~ d12*Ozone
Temp ~ c.*Solar.R + b1*Ozone + b2*Wind
Indirect_All := a1*b1 + a1*d12*b2
Ind_X_M1_Y := a1*b1
Ind_X_M1_M2_Y := a1*d12*b2
Direct := c.
Total := c. + a1*b1 + a1*d12*b2
"
lv1 = lavaan::sem(model=model1, data=airquality)
lavaan::summary(lv1, fit.measure=TRUE, ci=TRUE, nd=3)  # raw output
lavaan_summary(lv1)
# lavaan_summary(lv1, ci="boot", nsim=1000, seed=1)

Run the code above in your browser using DataLab