
Last chance! 50% off unlimited learning
Sale ends in
extractPrediction
)
and creates a lattice plot. For numeric outcomes, the observed and predicted data are plotted
with a 45 degree reference line and a smoothed fit. For factor outcomes, a dotplot plot is
produced with the accuracies for the different models.
If the call to extractPrediction
included test data, these data are shown, but
if unknowns were also included, they are not plottedplotObsVsPred(object, equalRanges = TRUE, ...)
extractPrediction
. There
should be columns named obs
, pred
, model
(e.g. "rpart", "nnet" etc)
and dataType<
# regression example
data(BostonHousing)
rpartFit <- train(BostonHousing[1:100, -c(4, 14)],
BostonHousing$medv[1:100], "rpart", tuneLength = 9)
plsFit <- train(BostonHousing[1:100, -c(4, 14)],
BostonHousing$medv[1:100], "pls")
predHomeValues <- extractPrediction(list(rpartFit, plsFit),
testX = BostonHousing[101:200, -c(4, 14)],
testY = BostonHousing$medv[101:200],
unkX = BostonHousing[201:300, -c(4, 14)])
plotObsVsPred(predHomeValues)
#classification example
data(Satellite)
numSamples <- dim(Satellite)[1]
set.seed(716)
varIndex <- 1:numSamples
trainSamples <- sample(varIndex, 150)
varIndex <- (1:numSamples)[-trainSamples]
testSamples <- sample(varIndex, 100)
varIndex <- (1:numSamples)[-c(testSamples, trainSamples)]
unkSamples <- sample(varIndex, 50)
trainX <- Satellite[trainSamples, -37]
trainY <- Satellite[trainSamples, 37]
testX <- Satellite[testSamples, -37]
testY <- Satellite[testSamples, 37]
unkX <- Satellite[unkSamples, -37]
knnFit <- train(trainX, trainY, "knn")
rpartFit <- train(trainX, trainY, "rpart")
predTargets <- extractPrediction(list(knnFit, rpartFit),
testX = testX, testY = testY, unkX = unkX)
plotObsVsPred(predTargets)
Run the code above in your browser using DataLab