Learn R Programming

catnet (version 1.00.0)

cnSearchSAcluster: Stochastic Network Search. Parallel Processing.

Description

This function provides a MLE based network search in the space of node orders by Simulated Annealing and also employing parallel processing.

Usage

cnSearchSAcluster(data, perturbations, 
	maxParentSet, maxComplexity=0, 
	parentsPool=NULL, fixedParentsPool=NULL, 
	selectMode = "BIC", 
	tempStart=1, tempCoolFact=0.9, tempCheckOrders=10, maxIter=200, 
	orderShuffles=1, stopDiff=0, 
	priorSearch = NULL, 
	clusterNodes=2, clusterHost="localhost", echo=FALSE)

Arguments

data
a matrix in row-nodes format or a data.frame in column-nodes format
perturbations
a binary matrix with the dimensions of data. A value 1 designates the node in the corresponding sample as perturbed
maxParentSet
an integer, maximal number of parents per node
maxComplexity
an integer, maximal network complexity for the search
parentsPool
a list of parent sets to choose from
fixedParentsPool
a list of parent sets to choose from
selectMode
a character, optimization network selection criterion such as "AIC" and "BIC"
tempStart
a numerical value, the initial temperature for the annealing
tempCoolFact
a numerical value, the temperature multiplicative decreasing factor
tempCheckOrders
an integer, the number of iteration with constant temperature
maxIter
an integer, the total number of iterations, thus orders, to be searched
orderShuffles
an integer, the number of order shuffles per iteration with 0 indicating random order at each iteration
stopDiff
a numerical value, stopping epsilon criterion
priorSearch
a catNetworkEvaluate object from a previous search
clusterNodes
an integer, the number of processing units to be used
clusterHost
IP address of the cluster host; 'localhost' as default
echo
a logical that sets on/off some functional progress and debug information

Value

  • A catNetworkEvaluate object.

Details

This is essentially the parallel version of cnSearchSA.

See Also

cnSearchOrder, cnSearchSA

Examples

Run this code
cnet <- cnRandomCatnet(numnodes=12, maxParents=3, numCategories=2)
  psamples  <- cnSamples(object=cnet, numsamples=100)
  nets <- cnSearchSAcluster(data=psamples, perturbations=NULL, 
		maxParentSet=2, maxComplexity=30)
  cnFind(object=nets, complexity=30)

Run the code above in your browser using DataLab