Learn R Programming

catnet

Categorical Bayesian Network Inference

Catnet is a R package for structure learning and parameter estimation of discrete Bayesian networks using likelihood-based criteria. It implements a dynamic programming algorithm for exhaustive search across networks with a given node order and stochastic search of optimal node orders via simulated annealing algorithm.

Copy Link

Version

Install

install.packages('catnet')

Monthly Downloads

74

Version

1.16.1

License

GPL (>= 2)

Maintainer

Nikolay Balov

Last Published

November 7th, 2022

Functions in catnet (1.16.1)

catnet-package

catnet: Categorical Bayesian network inference
classification

Classification demonstration
cnCluster-method

Network Clustering
cnCatnetFromSif

Categorical Network from Simple Interaction File (SIF) and Bayesian Networks Interchange Format (BIF)
catNetwork-class

Class "catNetwork"
catNetworkDistance-class

Class "catNetworkDistance"
cnCompare-method

Network Comparison
cnNodeSampleLoglik

Node Log-likelihood
cnNodes-method

Netwok Nodes
cnRandomCatnet

Random Network
cnFindAIC-method

Find Network by AIC
cnReorderNodes-method

Reorder Network Nodes
catNetworkEvaluate-class

Class "catNetworkEvaluate"
cnComplexity-method

Network Complexity
cnDot-method

Network Description File
cnLoglik-method

Sample Log-likelihood
CPDAG-class

Class CPDAG
cnEdges-method

Network Edges
cnFindBIC-method

Find Network by BIC
alarm

The ALARM network
cnEntropy

Pairwise Node Entropy
cnSearchOrder

Network Search for Given Node Order
cnMatEdges-method

Network Edge Matrix
cnFind-method

Find Network by Complexity
cnNodeLoglik

Node Log-likelihood
cnNodeMarginalProb-method

Probability Calculations
cnSamples-method

Samples from Network
cnDiscretize

Data Categorization
cnSearchHist

Parent Histogram Matrix
cnSearchSA

Stochastic Network Search
cnMatParents-method

Network Parent Matrix
cnNumNodes-method

Network Size
cnNew

New catNetwork
cnPredict-method

Prediction
cnParHist-method

Parenthood Histogram
cnOrder-method

Network Node Order
cnPearsonTest-method

Goodness of Fit Test
cnPlot-method

Plot Network
cnProb-method

Conditional Probability Structure
isDAG

Check Direct Acyclic Graph (DAG) Condition
novartis

Novartis multi-tissue data
cnSetProb-method

Set Probability from Data
cnParents-method

Network Parent Structure
cnSubNetwork-method

Sub-Network
cnSetSeed

Random Generator Seed
dag2cpdag-method

Complete Network Representation
breast

Breast cancer data
cnCatnetFromEdges

catNetwork from Edges